2．4 The Precise Definition of a Limit（page 104）

Definition 1 （ $\varepsilon-\delta$ language，page 106）．Let f be a function defined on some open interval that contains the number a ，except possibly at a itself．Then we say that the limit of $f(x)$ as x approaches a is L ，and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Figure 1：Limit of $f(x)$ as x approaches a is L ．極限的定義是＂互動式＂。δ 的找法在於＂存在性＂即可，並不需要找到最佳的範圍。邏輯符號：\forall 代表 for all；\exists 代表 exist。而 such that 數學上通常會簡記爲 s．t．。搭配邏輯符號，極限的定義可寫成： \qquad。

Example 2．Prove that $\lim _{x \rightarrow 1}(2 x+3)=5$ ．

Solution．

－Observation：We calculate $|(2 x+3)-5|=|2 x-2|=2|x-1|$ ．We want to find $\delta>0$ such that

$$
\begin{aligned}
\text { if } \quad 0<|x-1|<\delta, & \text { then } \quad 2|x-1|<\varepsilon \\
\text { That is, } & \text { if } \quad 0<|x-1|<\delta,
\end{aligned} \text { then } \quad|x-1|<\frac{\varepsilon}{2} .
$$

This suggests that we can choose $\delta=\frac{\varepsilon}{2}$ ．（or smaller）
－Proof：

Example 3．Prove that $\lim _{x \rightarrow 3} x^{2}=9$ ．

Solution．

－Observation：We calculate $\left|x^{2}-9\right|=|x+3||x-3|<\varepsilon$ ．We want to find $\delta>0$ such that

$$
\text { if } 0<|x-3|<\delta, \quad \text { then } \quad|x+3||x-3|<\varepsilon
$$

Notice that if we can find a positive constant M such that $|x+3|<M$ ，then $|x+3||x-3|<M|x-3|$ ，and then we can make $M|x-3|<\varepsilon$ by taking $|x-3|<\frac{\varepsilon}{M}=\delta$ ．
Since we are interested only in values of x that close to 3 ，it is reasonable to assume $|x-3|<1$ ，then $|x+3|<7$ ，so $M=7$ is a choice．
－Proof：
\square 考試作答的時候只要寫 Proof 的那段論證即可。
Example 4．Prove the Limit Sum Law：Suppose that the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist．Then $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$ ．
Proof．For all $\varepsilon>0$ ，since

Question 5．How do we show that the limit $\lim _{x \rightarrow a} f(x)$ does not exist？
Solution．證明極限不存在的其中一招是反證法：假設極限存在，記爲 $\lim _{x \rightarrow a} f(x)=L$ ，然後要證明「任何的」 $L \in \mathbb{R}$ 都會產生矛盾。那麼怎樣才有矛盾呢？按極限定義，必須證明 ＂there exists $\varepsilon>0$ ，for all $\delta>0$ ，there exists $0<\left|x^{\prime}-a\right|<\delta$ s．t．$\left|f\left(x^{\prime}\right)-L\right| \geq \varepsilon$＂。

Solution 2．因爲極限存在必唯一，所以利用反證法：若能設法找到「兩種數列」，其極限值不同，那麼就得到極限不存在。

Example 6．The Dirichlet function is defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irrational }\end{cases}
$$

Prove that $\lim _{x \rightarrow a} f(x)$ does not exist for every $a \in \mathbb{R}$ ．
Solution．Suppose $\lim _{x \rightarrow a} f(x)=L$ ．Notice that both rational numbers and irrational numbers are dense in real numbers．
If $L \geq \frac{1}{2}$ ，

If $L<\frac{1}{2}$ ，

無法正確畫出 Dirichlet 函數的圖形。
Example 7 （同學若有興趣可想一想這個例子）．The Riemann function is defined by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q},(p, q)=1 \text { is rational } \\ 0 & \text { if } x \text { is irrational. }\end{cases}
$$

Then the limit of $f(x)$ exists as x approaches to any irrational number．
Definition 8 （Definition of left－hand limit，page 109）．

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } a-\delta<x<a \text { then }|f(x)-L|<\varepsilon .
$$

Definition 9 （Definition of right－hand limit，page 109）．

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad a<x<a+\delta \text { then }|f(x)-L|<\varepsilon .
$$

Definition 10 （page 112）．Let f be a function defined on some open interval that contains the number a ，except possibly at a itself．Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that for every number M there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then } f(x)>M .
$$無限大的意義： \qquad

Example 11．Prove that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ ．

Solution．

－Observation：Let M be a given positive number．We want to find a number $\delta>0$ such that if $0<|x|<\delta$ ，then $\frac{1}{x^{2}}>M$ ．Notice that

$$
\frac{1}{x^{2}}>M \Leftrightarrow x^{2}<\frac{1}{M} \Leftrightarrow|x|<\frac{1}{\sqrt{M}}
$$

This suggests us to choose $\delta=\frac{1}{\sqrt{M}}$（or smaller）．
－Proof：

Definition 12 （page 112）．Let f be a function defined on some open interval that contains the number a ，except possibly at a itself．Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that for every number N there is a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then } f(x)<N .
$$

