2.2 The Limit of a Function, page 83

(One sided) Limit

Definition 1 (page 88). We write

$$\lim_{x \to a^-} f(x) = L$$

and say the *left-hand limit of* f(x) as x approaches a (or the *limit of* f(x) as x approaches a from the *left*) ($\Xi \overline{\&} \mathbb{R} \mathbb{R}$) is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a.

Similarly, if we require that x be greater than a, we get "the right-hand limit of f(x) as x approaches a (右極限) is equal to L" and we write $\lim_{x \to a^+} f(x) = L$.

□ 記號 " $x \to a^{-}$ " 代表只考慮 x < a 的部分; 而 " $x \to a^{+}$ " 只考慮 x > a 的部分。

Figure 1: Left-hand limit and right-hand limit.

Definition 2 (The limit of a function, page 83). Suppose f(x) is defined when x is near the number a. Then we write $\lim_{x\to a} f(x) = L$ if we can make the value of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

□ 極限 "lim
$$f(x) = L$$
"有時候會記做 " $f(x) \to L$ as $x \to a$ "。
□ 考慮極限 lim $f(x)$ 時, 函數值 $f(a)$ 「不重要」。
□ 極限 lim $f(x)$ 是在研究 $x = a$ 「附近」的行為。
 y

Figure 2: Limit of a function.

Example 3. Find the limit of the Heaviside function at x = 0.

Figure 3: The Heaviside function H(x).

Solution.
$$\lim_{x \to 0^{-}} H(x) =$$
_____, $\lim_{x \to 0^{+}} H(x) =$ _____, $\lim_{x \to 0} H(x)$ _____.

Example 4. The graph of a function f(x) is shown in Figure 4. Use it to state the values (if they exist) of the following:

Figure 4: The graph of f(x).

(a1)
$$\lim_{x \to 1^{-}} f(x)$$
 (b1) $\lim_{x \to 1^{+}} f(x)$ (c1) $\lim_{x \to 1} f(x)$ (d1) $f(1)$

(a2)
$$\lim_{x \to 2^{-}} f(x)$$
 (b2) $\lim_{x \to 2^{+}} f(x)$ (c2) $\lim_{x \to 2} f(x)$ (d2) $f(2)$

(a3)
$$\lim_{x \to 3^{-}} f(x)$$
 (b3) $\lim_{x \to 3^{+}} f(x)$ (c3) $\lim_{x \to 3} f(x)$ (d3) $f(3)$

Example 5. Observe the function $f(x) = \frac{\sin x}{x}$ and guess the value of $\lim_{x \to 0} \frac{\sin x}{x}$.

Figure 5: The graph of $f(x) = \frac{\sin x}{x}$.

§2.2-2

Example 6. Guess the limit $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ and $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

Figure 6: The graph of $f(x) = \sin\left(\frac{1}{x}\right)$ and $g(x) = x \sin\left(\frac{1}{x}\right)$.

Infinite Limits

Definition 7 (page 89). Let f be a function defined on both sides of a, except possibly at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

Definition 8 (page 94). Let f be a function defined on both sides of a, except possibly at a itself. Then $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily negative by taking x sufficiently close to a, but not equal to a.

Figure 7: Infinite limit $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} f(x) = -\infty$.

```
□ 極限 \lim_{x \to a} f(x) = \infty 也可以寫成 "f(x) \to \infty as x \to a."
```

[□] 這個例題遇到了什麼困難?

Similar definition can be given for the one-sided infinite limits:

$$\lim_{x \to a^-} f(x) = \infty \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^-} f(x) = -\infty \quad \lim_{x \to a^+} f(x) = -\infty$$

Definition 9 (page 90). The line x = a is called a *vertical asymptote* (垂直漸近線) of the curve y = f(x) if at least one of the following statement is true:

$$\lim_{x \to a} f(x) = \infty \qquad \lim_{x \to a^{-}} f(x) = \infty \qquad \lim_{x \to a^{+}} f(x) = \infty$$
$$\lim_{x \to a} f(x) = -\infty \qquad \lim_{x \to a^{-}} f(x) = -\infty \qquad \lim_{x \to a^{+}} f(x) = -\infty.$$

Example 10.

(a) $f(x) = \tan x$ has vertical asymptotes
(b) $f(x) = \sec x$ has vertical asymptotes
(c) $f(x) = \frac{1}{x}$ has a vertical asymptote
(d) $f(x) = \ln x$ has a vertical asymptote

 $\S2.2-4$