2．2 The Limit of a Function，page 83

（One sided）Limit

Definition 1 （page 88）．We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say the left－hand limit of $f(x)$ as x approaches a（or the limit of $f(x)$ as x approaches a from the left）（左極限）is equal to L if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a and x less than a ．

Similarly，if we require that x be greater than a ，we get＂the right－hand limit of $f(x)$ as x approaches a（右極限）is equal to L＂and we write $\lim _{x \rightarrow a^{+}} f(x)=L$ ．
\square 記號＂$x \rightarrow a^{-}$＂代表只考慮 $x<a$ 的部分；而＂$x \rightarrow a^{+}$＂只考慮 $x>a$ 的部分。

Figure 1：Left－hand limit and right－hand limit．

Definition 2 （The limit of a function，page 83）．Suppose $f(x)$ is defined when x is near the number a ．Then we write $\lim _{x \rightarrow a} f(x)=L$ if we can make the value of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a but not equal to a ．極限＂ $\lim _{x \rightarrow a} f(x)=L "$ 有時候會記做＂$f(x) \rightarrow L$ as $x \rightarrow a " 。$考慮極限 $\lim _{x \rightarrow a} f(x)$ 時，函數值 $f(a)$ 「不重要」。極限 $\lim _{x \rightarrow a} f(x)$ 是在研究 $x=a$ 「附近」的行爲。

Figure 2：Limit of a function．
$\square \lim _{x \rightarrow a} f(x)=L$ 若且唯若（if and only if） $\lim _{x \rightarrow a^{-}} f(x)=L$ 且 $\lim _{x \rightarrow a^{+}} f(x)=L$ 。

Example 3. Find the limit of the Heaviside function at $x=0$.

Figure 3: The Heaviside function $H(x)$.

Solution. $\lim _{x \rightarrow 0^{-}} H(x)=$ \qquad , $\lim _{x \rightarrow 0^{+}} H(x)=$ \qquad , $\lim _{x \rightarrow 0} H(x)$ \qquad -

Example 4. The graph of a function $f(x)$ is shown in Figure 4. Use it to state the values (if they exist) of the following:

Figure 4: The graph of $f(x)$.
(a1) $\lim _{x \rightarrow 1^{-}} f(x)$
(b1) $\lim _{x \rightarrow 1^{+}} f(x)$
(c1) $\lim _{x \rightarrow 1} f(x)$
(d1) $f(1)$
(a2) $\lim _{x \rightarrow 2^{-}} f(x)$
(b2) $\lim _{x \rightarrow 2^{+}} f(x)$
(c2) $\lim _{x \rightarrow 2} f(x)$
(d2) $f(2)$
(a3) $\lim _{x \rightarrow 3^{-}} f(x)$
(b3) $\lim _{x \rightarrow 3^{+}} f(x)$
(c3) $\lim _{x \rightarrow 3} f(x)$
(d3) $f(3)$

Example 5. Observe the function $f(x)=\frac{\sin x}{x}$ and guess the value of $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Figure 5: The graph of $f(x)=\frac{\sin x}{x}$.

Example 6．Guess the limit $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ and $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)$ ．

Figure 6：The graph of $f(x)=\sin \left(\frac{1}{x}\right)$ and $g(x)=x \sin \left(\frac{1}{x}\right)$ ．

這個例題遇到了什麼困難？

Infinite Limits

Definition 7 （page 89）．Let f be a function defined on both sides of a ，except possibly at a itself．Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large（as large as we please） by taking x sufficiently close to a ，but not equal to a ．

Definition 8 （page 94）．Let f be a function defined on both sides of a ，except possibly at a itself．Then $\lim _{x \rightarrow a} f(x)=-\infty$ means that the values of $f(x)$ can be made arbitrarily negative by taking x sufficiently close to a ，but not equal to a ．

Figure 7：Infinite limit $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} f(x)=-\infty$ ．
\square 極限 $\lim _{x \rightarrow a} f(x)=\infty$ 也可以寫成＂$f(x) \rightarrow \infty$ as $x \rightarrow a$ ．＂

Similar definition can be given for the one－sided infinite limits：

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty \quad \lim _{x \rightarrow a^{+}} f(x)=\infty \quad \lim _{x \rightarrow a^{-}} f(x)=-\infty \quad \lim _{x \rightarrow a^{+}} f(x)=-\infty
$$

Definition 9 （page 90）．The line $x=a$ is called a vertical asymptote（垂直漸近線） of the curve $y=f(x)$ if at least one of the following statement is true：

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

Example 10.

（a）$f(x)=\tan x$ has vertical asymptotes \qquad ．
（b）$f(x)=\sec x$ has vertical asymptotes \qquad ．
（c）$f(x)=\frac{1}{x}$ has a vertical asymptote \qquad ．
（d）$f(x)=\ln x$ has a vertical asymptote \qquad ．

