Chapter 2 Limits and Derivatives

2．1 The Tangent and Velocity Problem（page 78）

Question 1．What will we learn in the Calculus course？

The tangent problem，page 78

Example 2．Plot the parabola $f(x)=x^{2}$ ．Observe all secant lines（割線）passing through the point $P(1, f(1))$ and $Q_{\Delta x}(1+\Delta x, f(1+\Delta x))$ ，where $\Delta x \neq 0$ is a number close to 0 ．

Figure 1：The parabola $f(x)=x^{2}$ and secant lines passing through $P(1,1)$ ．
Solution．We can compute the slope of secant line $L_{P Q_{\Delta x}}$ to get

$$
\begin{aligned}
m_{P Q_{\Delta x}} & = \\
& =
\end{aligned}
$$

So the equation of secant line $L_{P Q_{\Delta x}}$ is \qquad ．When Δx is close to 0 ，the slope $m_{P Q_{\Delta x}}$ is close to $\overline{2 \text { ．That means the family of secant lines }}$ $L_{P Q_{\Delta x}}$ is close to the line $y-1=2(x-1)$ ，which passes through $P(1, f(1))$ and the slope is 2 ．

We call $y-1=2(x-1)$ the tangent line（切線）of $f(x)=x^{2}$ at $x=1$ ．

The velocity problem，page 80

汽車與機車的儀表板或自行車的碼表，記錄里程並顯示＂瞬時速度＂。棒球投手投球瞬間的速度；網球及羽球比賽球員揮拍或殺球的球速。（大螢幕顯示）Example 3．Suppose that a ball is dropped from the upper observation deck of Taipei 101．Find the velocity of the ball after 5 seconds．

Solution．If the distance fallen after t seconds is denoted by $s(t)$ and measured in meters，then Galileo＇s law is expressed by the equation

$$
s(t)=\frac{1}{2} \cdot 9.8 \cdot t^{2}=4.9 t^{2}
$$

We can approximate the velocity at instant time $t=5$ by computing the average velocity over the brief time interval

$$
\begin{aligned}
\text { average velocity } & =\frac{\text { change in position }}{\text { time elapsed }}=\frac{s\left(5+10^{-n}\right)-s(5)}{\left(5+10^{-n}\right)-5} \\
& =\frac{4.9 \cdot\left(\left(5+10^{-n}\right)^{2}-5^{2}\right)}{10^{-n}}=\frac{4.9 \cdot\left(5+10^{-n}+5\right)\left(5+10^{-n}-5\right)}{10^{-n}} \\
& =4.9 \cdot\left(10+10^{-n}\right)=49+4.9 \cdot 10^{-n} .
\end{aligned}
$$

That is，

Time interval	Average velocity $(\mathrm{m} / \mathrm{s})$
$5 \leq t \leq 5.1$	49.49
$5 \leq t \leq 5.01$	49.049
$5 \leq t \leq 5.001$	49.0049
$5 \leq t \leq 5.0001$	49.00049
$5 \leq t \leq 5.00001$	49.000049

It appears that as we shorten the time period，the average velocity is becoming closer to $49 \mathrm{~m} / \mathrm{s}$ ．The instantaneous velocity（瞬時速度）when $t=5$ is defined to be the limiting value of these average velocities over shorter an shorter time periods that start at $t=5$ ．Thus the instantaneous velocity after 5 second is $v=49 \mathrm{~m} / \mathrm{s}$ ．

Remark 4．Time periods 10^{-n} we choose in Example 3 are just some samples．In general，we can use Δt to represent any time interval and do the same calculation to get the average velocity form 5 to $5+\Delta t$ is $4.9 \cdot(10+\Delta t)$ ．The average velocity is becoming closer to $49 \mathrm{~m} / \mathrm{s}$ as well when we shorten the time period．

