Chapter 1 Functions and Models

1.1 Four Ways to Represent a Function, page 10

Definition 1 (page 10). A function (函數) f is a rule that assigns to each element x in a set D exactly one element, called f(x) in a set E.

Figure 1: (a) machine diagram; (b) arrow diagram; (c) graph (圖形) of a function.

We usually consider functions for which the sets D and E are sets of real numbers \mathbb{R} .

- □ domain (定義域), codomain (對應域), range (值域).
- \Box value of f at x (or "f of x").
- \Box independent variable, dependent variable.

There are four possible ways to represent a function:

verbally (by a description in words). 平常的溝通與交流
 numerically (by a table of values). 透過數據之觀察可發現一些現象
 visually (by a graph). 視覺引導通常會帶來深刻印象, 但有時圖形無法如實呈現
 algebraically (by an explicit formula). 數學上的嚴謹性充足, 但有時候不直覺
 Example 2. Find the domain of the following function:

(1)
$$f(x) = \frac{x^2}{1+x}$$
.
(2) $f(x) = (x-2)\sqrt{\frac{1+x}{1-x}}$.
(3) $f(x) = \log(x+2) + \log(x-2)$.
 $D = \{x \in \mathbb{R} \mid \}$
 $D = \{x \in \mathbb{R} \mid \}$

(4) $f(x) = \tan x$. $D = \{x \in \mathbb{R} \mid \}$.

Vertical Line Test (page 15). A curve in the xy-plane is the graph of a function of x if and only if no vertical line intersects the curve more than once.

□ 判斷一條曲線是否為函數的圖形,幾何上使用「垂直線法」。

Example 3. Give examples that one curve is the graph of a function and one curve is not the graph of a function.

Figure 2: Left curve is a graph of a function; Right curve is not a graph of a function.

Example 4 (page 16). The *absolute value* (絕對值) of a number a, denoted by |a|, is the distance from a to 0 on the real number line. The graph of the absolute value function is

Figure 3: The graph of the absolute value function.

Example 5. Sketch the graph of the *Heaviside function* H(x), which is defined by

Figure 4: The Heaviside function.

Example 6. The graph of the sign function sgn(x) (符號函數), which is defined by

Figure 5: The sign function sgn(x).

□ 稱之為符號函數的原因是: _____

Definition 7 (Odd function and even function, page 17–18).

- (a) If a function f satisfies f(-x) = -f(x) for every number x in the domain, then f is called an *odd function* (奇函數).
- (b) If a function f satisfies f(-x) = f(x) for every number x in the domain, then f is called an *even function* (偶函數).

Figure 6: Left: odd function; Right: even function.

□ 所有奇函數圖形必對稱於

□ 所有偶函數圖形必對稱於

Example 8. Any function defined on \mathbb{R} can be (uniquely) decomposed as the sum of an odd function and an even function.

Proof. Define two functions

$$g(x) = \frac{f(x) - f(-x)}{2}$$
 and $h(x) = \frac{f(x) + f(-x)}{2}$.

We will show that

- g(x) is an odd function:
- h(x) is an even function:
- $\underline{f(x)} = g(x) + h(x)$:

Definition 9 (Increasing and decreasing functions, page 19).

- (a) A function f(x) is called *increasing* (遞增) on an interval I if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$ in I.
- (b) A function f(x) is called *decreasing* (遞減) on an interval I if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ in I.

Figure 7: Increasing function and decreasing function.

□ 教科書與微積分課用 increasing 及 decreasing 等詞彙時,函數值比較都是「不等號」。
 □ 有些書或文獻會用 "strictly" 或 "monotone" increasing (decreasing) 強調不等號。