Chapter 1 Functions and Models

1．1 Four Ways to Represent a Function，page 10

Definition 1 （page 10）．A function（函數）f is a rule that assigns to each element x in a set D exactly one element，called $f(x)$ in a set E ．

（a）

（b）

（c）

Figure 1：（a）machine diagram；（b）arrow diagram；（c）graph（圖形）of a function．

We usually consider functions for which the sets D and E are sets of real numbers \mathbb{R} ．domain（定義域），codomain（對應域），range（值域）．value of f at x（or＂f of x＂）．independent variable，dependent variable．

There are four possible ways to represent a function：
（1）verbally（by a description in words）．
平常的溝通與交流
（2）numerically（by a table of values）．
透過數據之觀察可發現一些現象
（3）visually（by a graph）．視覺引導通常會帶來深刻印象，但有時圖形無法如實呈現
（4）algebraically（by an explicit formula）．數學上的嚴謹性充足，但有時候不直覺
Example 2．Find the domain of the following function：
（1）$f(x)=\frac{x^{2}}{1+x}$ ．
$D=\{x \in \mathbb{R} \mid \quad\}$.
（2）$f(x)=(x-2) \sqrt{\frac{1+x}{1-x}}$ ．
$D=\{x \in \mathbb{R} \mid \quad\}$.
（3）$f(x)=\log (x+2)+\log (x-2)$ ． $D=\{x \in \mathbb{R} \mid \quad\}$ ．
（4）$f(x)=\tan x$ ． $D=\{x \in \mathbb{R} \mid$

Vertical Line Test（page 15）．A curve in the xy－plane is the graph of a function of x if and only if no vertical line intersects the curve more than once．
\square 判斷一條曲線是否爲函數的圖形，幾何上使用「垂直線法」。
Example 3．Give examples that one curve is the graph of a function and one curve is not the graph of a function．

Figure 2：Left curve is a graph of a function；Right curve is not a graph of a function．

Example 4 （page 16）．The absolute value（絕對值）of a number a ，denoted by $|a|$ ， is the distance from a to 0 on the real number line．The graph of the absolute value function is

$$
f(x)=|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Figure 3：The graph of the absolute value function．

Example 5．Sketch the graph of the Heaviside function $H(x)$ ，which is defined by

$$
H(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x \geq 0\end{cases}
$$

Figure 4：The Heaviside function．

Example 6．The graph of the sign function $\operatorname{sgn}(x)$（符號函數），which is defined by

$$
\operatorname{sgn}(x)=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{array}\right.
$$

Figure 5：The sign function $\operatorname{sgn}(x)$ ．稱之爲符號函數的原因是： \qquad
Definition 7 （Odd function and even function，page 17－18）．
（a）If a function f satisfies $f(-x)=-f(x)$ for every number x in the domain， then f is called an odd function（奇函數）．
（b）If a function f satisfies $f(-x)=f(x)$ for every number x in the domain，then f is called an even function（偶函數）．
\square
奇函數的例子： \qquad偶函數的例子： \qquad

Figure 6：Left：odd function；Right：even function．所有奇函數圖形必對稱於 \qquad所有偶函數圖形必對稱於 \qquad

Example 8．Any function defined on \mathbb{R} can be（uniquely）decomposed as the sum of an odd function and an even function．

Proof．Define two functions

$$
g(x)=\frac{f(x)-f(-x)}{2} \quad \text { and } \quad h(x)=\frac{f(x)+f(-x)}{2} .
$$

We will show that
－$\underline{g(x)}$ is an odd function：
－$h(x)$ is an even function：
－$\underline{f(x)=g(x)+h(x): ~}$

Definition 9 （Increasing and decreasing functions，page 19）．
（a）A function $f(x)$ is called increasing（遞增）on an interval I if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I ．
（b）A function $f(x)$ is called decreasing（遞減）on an interval I if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$ in I ．

Figure 7：Increasing function and decreasing function．敎科書與微積分課用 increasing 及 decreasing 等詞彙時，函數值比較都是「不等號」。有些書或文獻會用＂strictly＂或＂monotone＂increasing（decreasing）強調不等號。

