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Chapter 11 Infinite Sequences and Series

11.1 Sequences (page 694)
Definition 1 (page 694).

(1) A sequence (H(F) is a list of numbers written in a definite order:

a1,02,A3,Q4y...3Qpy....

The number a; is called the first term (5—), as is the second term (8_%), and in
general ay, is the n-th term (5 n ).
(2) An infinite sequence (FEEBFHF) is a sequence that each term a, has a successor a,1.
(3) The sequence {ay,as,as, ..

.} is also denoted by {a,} or {a,}22,

U #iEs R RREN RSN, HHREEIIREF S TR, £ REREEGEMLE (B2,

Example 2 (page 694). Some sequences can be defined by giving a formula for the n-th term.
There are three methods to describe a sequence. Notice that n doesn’t have to start at 1.
(8) {25152, an = 2, (L2 n oy
(b) (e a, = S (-28 4 DDy
(c) {vn =3}, anp =+v/n—3,n >3, {0,1,v/2,V3,...,v/n—3,...}.
(d) {cos 1y, an = cos i, n >0, {1,@,%,0 ,cos LT

U 85I RE—~EB{EHE—ERREE, WS =EBUREREREA, Fli (o) 8 (d) MK,

Example 3 (page 695). Here are some sequences that don’t have a simple defining equation.

(a) The Fibonacci sequence (B IEEF) {f,} is defined recursively by the conditions

f1 =1,

fn:fn—1+fn—2a n > 3.

The first few terms are {1,1,2,3,5,8,13,21,34,55,..
13th-century Italian mathematician known as Fibonacci solved a problem concerning
the breeding of rabbits.

.}. This sequence arose when the

(b) If we let a, be the digit in the n-th decimal place of the number v/2, then {a,} is a
well-defined sequence whose first few terms are {4,1,4,2,1,3,5,6,2,...}.
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7%E Definition 4 (page 696). (BFIFRIRZ WaiE#&E)

i

ssyrorame (1) A sequence {a,} has the limit L and we write

B E 2 lim a, = L or ap — L as n— oo

REFE (BH), n—00

FHERH. W . . . .

lim ay, = oo if we can make the terms a, as close to L as we like by taking n sufficiently large.

T, BRI

5, (2) If lim a, exists, we say the sequence converges (or is convergent, #{#). Otherwise, we

n— oo
say the sequence diverges (or is divergent, ##).

(3) If a,, becomes large as n becomes large, we use the notation lim a, = cc.
n—oo

SRR E Theorem 5. If lim a, exists, then it is unique.
R B IR R & n—00

[, HEMAER ..

B Property 6 (Limit Laws for Sequences, page 697). If {an} and {b,} are convergent sequences

and ¢ is a constant, then

(1) lim (ap + by) = lim a, + lim by,.
n—oo n—oo n—oo

@ 558, {on = bn) = 10 0 — 18 o

(3) lim ca, =c lim ay,. In particular, lim ¢ = c.
n—o0 n—oo n—oo

(4) lim (apb,) = lim a, - lim b,.

n—oo n—oo n—oo
. a lim a, ) .
(5) lim = = ==e=0— if lim b, # 0.
n—oo ’n n n—00

p
(6) lim af, = ( lim an) if p> 0 and a,, > 0.
n—oo

The Squeeze Theorem (KIEEH, page 698). If a, < b, < ¢, for n > ng and li_)m a, =

lim ¢, = L, then lim b, = L.
n—oo n—oo

El% Theorem 7. If lim a, = L, then the limit of any subsequences lim a,, = L.
d i n—oo0 k—oo
=

Ok 23
vouvanene || BFRETETE, BEAH (BIR(E) A —E

e [ BOIREIREBRER— B [ARES ) R [HHEH .,

BREUORT [ yeise s, REREER— B2 % = MEVE A/ NIRET, RIS E AR A/ N,

Eg%&:giﬂw‘iﬁ U ¥ EEEE RV ERRSRATYGE — BHEBIIBRAEE,
¥—E#568EE Theorem 8 (page 698). If lim |a,| =0, then lim a, = 0.
&, TLETHE noee nee

RE 5% 43 AT AR IR 1A, : : _
FERBE, B Proof. Since , by the , we have nh_)ngo an = 0. O
IR B EE,

ememgemy L BIIMEHEZ RNERLERS, REFIEER YRS, #RECHFEEHENSR.
B,
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Theorem 9 (page 697). If li_)m f(z) = L and f(n) = an when n is an integer, then lim a, =

n—oo
L.
Theorem 10 (page 699). If li_)rn an, = L and the function f is continuous at L, then
n o
Jim f(an) = f(L).
Y Y
x x

Figure 1: Limit relations between functions and sequences.

O ATEE 9. FH 10, SATLUE FE S BBy M FIE IS REIR, #7 )
O 3 10 B CEEEH FILABGIN TR S5ER,
= 0, (FBEE EESEEEN)

L] # lim a, =0, 8 lim |a,| = ‘ lim a,
n—oo n—o00 n—oo
Example 11. Discuss the convergence or divergence of the following sequences:

(2) an = g2t ) by=2 () co="2" (d)dy =122 (e) e, =sin(Z).

n" n n

Solution.
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[e.e]

o° | is convergent if —1 < r <1 and divergent

MIBfcb5shmKs

BRELEE, & lim r" =
HREEM A e
i, EAERIE
#REE, LAF Proof. Consider f(z) = a®. We know lim ¢* =ocifa>1; lim a®* =0if0<a < 1.
&?ﬁ%é@c T—00 T—00

(1) Put a=r, we have

0 if —l<r<l
1 if r=1.

(2) Ifr =1,

(3) If r =0,

(4) If -1 <r <0,

(5) If r =—1,

6) If r < —1,

Exercise. Show that lim nr” =0if |r| < 1.
n—oo

E#E Definition 13 (page 700). A sequence {a,} is called increasing (I&¥) if a,, < a,1 for all
g% n > 1, that is, a; < ag < az < ---. It is called decreasing (&) if a, > ani1 for alln > 1. A
0a3Tikp31U - gequence is monotonic (BLF) if it is either increasing or decreasing.
gigﬁﬁﬁiﬁa@ Definition 14 (page 701). A sequence {a,} is bounded above (§_EFY) if there is a number
HE S, M such that a,, < M for all n > 1. It is bounded below (ﬁ—Fﬁ) if there is a number m such

that m < a,, for all n > 1. If it is bounded above and below, then {a,} is a bounded sequence

(BFES).
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Monotonic Sequence Theorem (page 702). FEvery bounded, monotonic sequence is con-

vergent. (BEFEFETILKE. )

X

Figure 2: Monotonic sequence theorem.

LI B REGIRBIE, FIA: o
[ BEERBTIR B, FIAn: o

U] Er s AR E B MM AR (completeness axiom), G7E &S MO HIERE T EEMETH.

Example 15 (page 703). Investigate the sequence {a,}7> ; defined by the recurrence relation
GEERATR): a1 = 2,ap41 = %(an +6) forn=1,2,3,....

Solution. Monotone: We claim: a,4+1 > a, for all n € N.
(1) Whenn =1,
(2) Assume that it is true for n = k, that is, ag+1 > ax.
(3) Whenn =k +1,

(4) By , we know {a,,} is monotone.

Bounded: We claim: a,, < 6 for all n € N.
(1) When n =1,
(2) Assume that it is true for n = k, that is, a; < 6.
(3) Whenn=k+1,

(4) By , we know {a,} is bounded above by 6.

Limit: By , we know lim a, exists. Let lim a, = L. Since
n— 00 n—oo
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11.2 Series (page 707)

Definition 1 (page 707-708). Let {a,}°2; be an infinite sequence.
(1) The partial sums (&337F1) of the sequence {a,}>2, is defined as
n
sn=Zak=a1+a2+---+an-
k=1
These partial sums form a new sequence {s,}°2 ; (FRFIHF).

(2) An infinite series (or just a series #EESFRE) is denoted by

o0 n
def. . . .
g a, = lim g ar = lim s, = lim (a1 +as + -+ + ay),
n—= =

which means the limit of the partial sums of the sequence {a,}>2 ;.

(3) If the limit li_)rn sp = s exists (or convergent) as a finite number, then we say the series
n—oo

o0 o0
> ay, convergent (JIH), and the number s is called the sum of the infinite series Y a,
n= n=1

().

o
(4) If the sequence {s,}°2; is divergent, then the series Y a, is called divergent (Z8).

n=1
L]t et B2 MBS, B8 O REFIRHRR | 2 E 25 8 a8 R B AE B H.

Example 2 (page 708). In this chapter, we are not interested in the infinite arithmetic series

(SRR BHE):

i(cH—(n—l)d)déf’a+(a—|—d)+(a—|—2d)+'~—I—(a+(n—1)d)—I—---,

n=1

where each term is obtained from the preceding one by adding it by the common difference

(A%) d. This is because the arithmetic series is convergent if and only if a = 0 and d = 0.
[ ESES2REM T 5 EHR ORI, EMIHRAREN, SR ERRE,

Example 3 (page 709). The geometric series (FHARE. BITHRED is an infinite series
o0
Zar"‘l Coatart+art+ar® a4+, a#£0.
n=1

Each term is obtained from the preceding one by multiplying it by the common ratio (/AER) r.

We will discuss the convergence or divergence of the geometric series in the following theorem.

[ SR BIEmEREcERTE THE EEN A G, BIRET .
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Theorem 4 (page 710). The geometric series

is convergent if |r| <1 and its sum is

If |r| > 1, the geometric series is divergent.

Proof.

o0
E ar™ ! =
n=1

a

1—r

if Jrl < 1.

o
Zar”_l:a+ar+ar2+ar3+---+ar"_1+-~, a # 0.
n=1

O

Example 5. Write the number 0.142857 = 0.142857142857 . .. as a ratio of integers (fraction).

Solution.

[&.°]
Theorem 6 (page 713). If the series > ay is convergent, then lim a, = 0.

Proof.

Test for Divergence (page 713). If li_)m an does not exist or if li_}rn an # 0, then the series
n—oo n [e.e]

[ee)
> ay is divergent.

n=1

n=1

n—oo
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Example 7 (page 713). The harmonic series (FAFIREL) is an infinite series

Zldﬁfl+1+1+1+ i
n 2 3 4 n

n=1

Show that it is divergent.
Proof.

O # lim a, =0, ARH i’f 0, MRS S
B BRI z B z arn= Sk f 1,

Theorem 8 (page 714). If Z ap and Z b, are convergent series, then so are the series

> cay (where ¢ is a constant), > (an + by), and > (an —by), and

n=1 n=1

(©) 3 (an—by) = ian—ibn.

n=1 =1

RN E Z an 42 Z b Z T REZE,

[ %I,E*HJJ[I&H?JE’J%ﬁﬂ’]f’r&iﬁﬂéﬁi@%ﬂé’]%&%ﬁﬂﬁ*ﬁﬂﬂﬂ‘ﬁﬂ
O ==& Z anby, # Z an - Z bno FREFIHIRATR BT & 2 B B AR

n=1

L] f’r&%&%ﬂﬁ’ﬂﬂﬁl%ﬁ(éﬁfﬁﬁuﬁﬁﬁﬂiﬁﬁ%o
% S a, Wk S by B8 B S (ay, + b,) BB (BRE 11.2, #83.)
n=1 n=1 n=1

O % 5 an 8855 by BEG BT S (ay + by) AT —E 558, (R 11.2, #84,)
n=1 n=1

n=1
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11.3 The Integral Test and Estimates of Sums (page
719)

The Integral Test (page 721). Suppose f(x) is a continuous, positive, decreasing function

o
on [1,00) and let a, = f(n). Then the series Y. a, is convergent if and only if the improper
n=1 JgpkrbFR7ew

integral floo f(x)dx is convergent. In other words,

BES IR EE AL
00 TR A BT
(a) If floo f(x)dz is convergent, then 2_:1 an 18 convergent. WA s
£_ . BEEHZE
0o .. .. BEROR, s
(b) If {7 f(x)dx is divergent, then n§::1 ap is divergent. hopaiiniadion
WEHE, EOH
B RERR TE

Yy Yy TERH

x x

Figure 1: The integral test.

U B8 f(x) 28 THHIE | B2 DRI, BB i R B A 4 LB R
O EspEARA REE [ n = 1,2 = 1 BIA); BERSSRNT A R EER.
[ 38 LR RARE S R M A HR N SENE, BARERE BB HRE,

o
Theorem 1 (page 721). The p-series # (p-E) is convergent if p > 1 and divergent if %
p<1. ! =

aRHTPX5D7XI

Proof. 1f p <0, PR B

_ A EREEA, H
Iftp=0, ISR LA
If p > 0, consider f(x) = x—lp, which is continuous, positive and decreasing on [1,00). Since ERER
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o
Example 2 (page 722). Determine whether the series > B2 converges or diverges.

n
n=1

Solution.

[ B EEE « RE A RES BRENEE, TUNERE—RE .

Estimating the Sum of a Series, page 723

[o.¢]
Suppose a series > a, is convergent by the Integral Test. We can also estimate the size of
n=1
the remainder (BR%)
o
4&28—%=%H+%H+%w+“::z:%
k=n+1

Remainder Estimate for the Integral Test (page 718). Suppose f(k) = ax, where f(x) is

a continuous, positive, decreasing function for x > n and Y a, is convergent. If R, = s— sy,
n=1

then
/n+1 flz)dz < R, < /n f(x)de. (1)

If we add s,, to each side of the inequalities (1), because s, + R,, = s, we get

sn—i-/niolf(x)da:gsgsn+/noof(a:)dx.

Figure 2: Remainder estimate for the Integral Test.
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o
Example 3 (page 723). Approximate the sum of the series % How many terms are E&z
n=1

required to ensure that the sum is accurate to within 0.005? T
tXW4uKcot00

Solution. IR AT FA
SRR ETRE

ERIEMET.
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11.4 The Comparison Tests (page 727)

[e.o] o0
EZ5iE  The Comparison Test (page 727). Suppose that Y a, and > by, are series with positive

i : n=1 n=1
Eig=s  terms and ap < by for all n.
XOP1V6VewNE
o o
waapEmE (@) If Y2 by is convergent, then Y ay, is also convergent.
RETIRE R B n=1 n=1

Bttt (R - -

ERAREENE  (b) If Y a, is divergent, then ) b, is also divergent.

g, tgEHR, K n=1 n=1

RO BB R T HE RS . . -

INETRR BRI _ _ _

B TS Proof. Let s, = kzl ag,tn = kzl b, and t = kzl by.

RETRBEE. T - - -

H, ©HEAE  (a) Monotone: Since both series have positive terms, the sequences {s,}%; and {t,}°%,

[EER S ] .
are 1ncreasing.

Bounded: Since ai < b for all k, we have s,, <t, <t.

o0
By the , Y @y converges.

n=1

[ee] o0
(b) If 3" a, is divergent, then s, — oo, thus ¢, — oo. Therefore > b, diverges.

n=1 n=1

Most of time we use p-series and geometric series for the purpose of comparison.

[e.°]

S——— (1) p-series: ). n—lp It is convergent if and divergent if
n=1 E—
R FI S o
BER pMECE (2) geometric series: . ar™ 1. Tt is convergent if and divergent if
B B 5 91 = S
TEH ERREAIHEL

4, FrLRERR . x .
B B P %;\ZE Example 1. Show that the series Zl 7% is convergent.
n=

BTl
Solution.
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o0 o0
The Limit Comparison Test (page 729). Suppose that > a, and Y b, are series with Ez#E

n=1 n=1 15_:: r
positive terms. If E
95E2eNPilqw
. Gnp,
lim — =g,
n—oo by, TERR LA AR A
. . . . . R ECB I A R
where ¢ is a finite number and ¢ > 0, then either both series converge or both diverge. %0 3 F ) B T
Proof. Let m and M be positive numbers such that m < ¢ < M. Since $* is close to c for &, ﬁ’iﬁﬁ&ﬁz
_ _ L i n I T ST PR RERY
large n, there is an integer N such that KNI, HEERE
Qn TE MBI LIS
m < o < M = mb, < a, < Mb, when n > N. RETELE, BIRE
n A R
By the , we know both series converge or both diverge. O %

L By Ak B RERR a2 Ak FUE AT RS TIETER B,

Example 2 (page 730). Determine whether the following series converges or diverges.

> qgn 20?2+ 3n i
a um— b gy 3fRmnVgSWBE
();3“0” ();\/5+n5 ’
. PV A
Solution. PR EL s 1 i 3 B
RBEI S, a0
fAl SR AN B LLER IR
BOR? Ak —
fE TREE N
IR, EME
145 (S8 (or-
der) B, &£
B B TR,

Exercise (page 726). Determine whether the following series converges or diverges.

[ee} 2 o0 ] 1
(@) S <1+ %) b)Y (© a
n=1 n=11 " n=1
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Estimating Sums, page 730

4 n=1
oo oo

(0.0]
%% If we have used the Comparison Test to show that a series Y a, converges by comparison
= . . . . .
oo_vmovzgs With a series ) by, then we may be able to estimate the sum ) a, by comparing remainders.

n=1 n=1
Consider the remainder R,, = s—5s,, = @pt1+apio+--- and T, = t—t, = b1 +bpio+---.

# R LA RS
ks, BT Since a, < b, for all n, we have R, < T,.
HEITEREMET, B 00

EimEEaRE (1) If > b, is a p-series, we can estimate its remainder 7T), as in Section 11.3.
T B B n=1
o0
(2) If > by, is a geometric series, we can sum it exactly.
n=1

ExdE  Example 3 (page 730). Use the sum of the first 100 terms to approximate the sum of the
- (o]

3

EEE  series ) n%ﬂ Estimate the error involved in this approximation.
LNUObzAzmSc n=1

SFmEAEsy Sorution.

@t e iR
BRIEAEET, Hp—
B2 p-REE
THE, H—ER
PS5 LR BT I
B

10

cos®n

Example 4 (page 731). Use == = 0.07393 to estimate the error of the sum of the series
n=1
cos’n
50
n=1
Solution.
10 00
Exercise. Use > ﬁ = 0.19788 to estimate the error of the sum of the series ) ﬁ.
n=1 n=1




11.5 Alternating Series goo.gl/y9pRb5

11.5 Alternating Series (page 732)

Definition 1 (page 732). An alternating series (AT$E#R#) is a series whose terms are alter-

nately positive and negative.

Example 2 (page 732). Two examples of alternating series are

o0
1 1 1 1 1 1
)yl 2y 22
Z( ) n 2+3 4+5 6+
n=1
o0
n 1 2 3 4 5 6
1" e e T
;( e Bt R Sl -l

Alternating Series Test (page 727). If the alternating series

> (1) by =by —by+bg—by+bs—bg+-+, where by >0,

n=1
satisfies
(a) bpt1 < by for alln
(b) 35, =0

then the series is convergent.

Figure 1: Alternating series test.

O 2o R B SRR [ —THZ IR X H TEERE], RSB,

Example 3 (page 734). Determine whether the following series converges or diverges.

X 1yn—1
(a) Z L

Solution.

gIEY2_ZYvQQ

ERBEE—HIE
BRGER, H#
BRI DU A SR
BB, &
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%, MR EUK
o
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Ak R 2 E R
1, BRI R
TR, EEA
A, AR
OB R AU E R HE R
BEEL
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S 2
Example 4 (page 734). Test the series nz_:l(—l)’”l —s7 for convergence or divergence.

Solution.

[e.°]
Exercise. Test the series > (—1)" (e% — 1) for convergence or divergence.
n=1

Estimating Sums, page 735

[e.9]

Alternating Series Estimation Theorem (page 735). If s = > (—1)""'b, is the sum of
n=1

an alternating series that satisfies

(a) bn-‘rl < bn
®) 2.5 =0,

then |R,| = |s — sn| < bpt1-

L THre ) 2S8R (W (a) B2 (b)), AURERIE G IREA S 322 HEE S —HERE,
O peres FUE AR (A2t , HAER R RErE A,

Example 5 (page 735). Find the sum of the series ni—ozo % correct to three decimal place.
o0
Solution. Since (n-‘,l-l)! = (n+1l)n! < % and 0 < nh_)n;()% < nh_)n;()% = 0, the series > (—n1!)n
converges by the . By the Alternating Series Estimation 7TL‘_hOeorem
we hope |s — s,| < bpq1 < 0.0005, so (n+ 1)! > 2000 and n > 6. Hence s = s = & — 1+
% - % + % — % + é = 0.368056 ... = 0.368 correct to three decimal places with maximum

error less than 0.001.

Exercise (page 736). How many terms of the series do we need to add in order to find the
[e.e]

sum of the series (—1)"“% correct to four decimal place?
n=1
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11.6 Absolute Convergence and the Ratio and Root
Tests (page 737)

Definition 1 (page 737-738).
(1) A series Y a, is called absolutely convergent (F&EHLEL) if the series of absolute values
n=1

o0
> |an| is convergent.
n=1

(2) A series Y. a, is called conditionally convergent (f&{FHER) if it is convergent but not

n=1
absolutely convergent.

Example 2 (page 737).

oo n
(a) The series ) % is absolutely convergent.
n=1

S n
(b) The series Y (_nl) is conditionally convergent.
n=1

o0

Example 3. Determine the series ) (—1)" sin % is absolutely convergent, conditionally con-
n=1

vergent, or divergent.

Solution.

Exercise. Determine the series (a) > (—1)""1¥2H-vR=l ang (b) Y T(Lai);) is absolutely
n=1 n=2

convergent, conditionally convergent, or divergent.

o
Theorem 4 (page 738). If a series Y a, is absolutely convergent, then it is convergent.
n=1

Proof.

[ ]

53

Txpji7oaJLA

MR W B A
RERLE—EM
TREHEZ BRITR B
Wk, Wk
IiEHE, e
JRIETE R o

HBAZY1vpB2Q

R
HER S (17
B, 40 sin L
B n BAHEE
L ETS, @
B AT B
et

x_wgYkVW70s

R B A,
AR B a, &
ZA—TE KL



AR R B
B ELRE
HORIE, BRIELLAT
HFBUR A LRI
&, MEEHERN
BRZEEU 15
S5 EEEER
EER 1, A5
HR.

5_EGI1__1Bk

BIREREEANA A EE
[ERSIDGIEESAATE
2 A8 B0 s
18

e
e

0fRNf£fD1IGw

RS AR R B
QPN =)
#, AREELR
Bty —BEAGE S
B n XIRFER
FREHIEALL,
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The Ratio Test (page 739).
o0
(a) If li_)rn Goxll — [, < 1, then the series Y. a, is absolutely convergent (and therefore
n—oo " n=1
convergent).
o0
(b) If lim |*=| =L >1 or lim || = oo, then the series . a, is divergent.
n—o0 n n—o0 n ne1
(c) If lim “il| = 1, the Ratio Test is inconclusive (FEEFEERT); that is, no conclusion
n o n

o0
can be drawn about the convergence or divergence of > ay,.
n=1

O] o B Ess, BB [1T8R] HALS » OFLREEEH, P L<r <L

Example 5 (page 740). Determine whether the series is absolutely convergent, conditionally
[e.e]

(b) 3 (—1)riez

n=1

nn’

convergent, or divergent. (a) > (—1)"%3

n=1

Solution.

L] #F el = (-] Mik®, HEE (Ratio Test) EHELFH.
U #8 T%ER ) TEEKS S0E [=ARE, E% AR,
O HE2IRE e mT: S L B T S & WL

n=1 n=1

Exercise (page 743). Determine whether the series is absolutely convergent, conditionally

. S on? 0 (n!)?
convergent, or divergent. (a) = (b) > GDIR
n=1 n=1 )

The Root Test (page 741).

[ee]
(a) If lim {/|a,| = L < 1, then the series Y ay is absolutely convergent (and therefore
n—o0

n=1
convergent).
[e.e]
(b) If im {/|an| =L >1 or lim {/|ay| = oo, then the series »_ ay is divergent.
n—00 n—00 n=1

(c) If li_)m /|an| =1, the Root Test is inconclusive (SEEFEER).
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o0 n
Example 6 (page 741). Test the convergence of the series ) <§Zi§’> .

n=

Solution.

O SBREUE S (a,)" TEEBERE (Root Test).
n=1
U] IEHRIRREEE & (11.8 Z2#).

Exercise (page 743). Determine whether the series is absolutely convergent, conditionally

convergent, or divergent. (a) Y. (1+ %)n2 () Y (vVn—+n—1)%",
n=1 n=1

Rearrangements, page 742

If we rearrange the order of the terms in a finite sum, then the value of the sum remains

unchanged. But it is not always the case for an infinite series.

By a rearrangement of an infinite series ioz a, (BFHE) we mean a series obtained by
simply changing the order of the terms. Formgl:l;f, we will write > Ag(n) Where o(n) is an one-
to-one map from the natural number N to itself. For instancejr(;)rearrangement of Y Ag(n)
could start as follows: 7

az +ay +az +azz + ais +ao +ao + - .
It turns out that
Theorem 7 (page 742).
o [o.¢]
(a) If > ay is an absolutely convergent series with sum s, then any rearrangement of > ay

has the same sum s.

o0
(b) If > ay, is a conditionally convergent series and r is any real number whatsoever, then

n=1
00

there is a rearrangement of > ay that has a sum equal to .
n=1

BIRE T AR
A T R )
Atk

9Skjoj7F2HK

R A AR A
ik BB R
HRIER 2 F#F
RIS B R
We? ERIEF L
HHESRE, BT
& (Riemann)
FHES T UUTE
B BBk
BEHmEZ B
B R
BT DA R RN
EEIRS SO RGRIITDR

i

o



hAVP219aPs4

15 7B 8 R 2K
(Tefaesi), E2f0
B S, RlIRBIER
HIFRELE, IR
35
2S.

3 (T S R A
ok, AT
AR .

aWmWSnWmzro

LB B
B, RRANE AR
BT LA 1R
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Example 8 (page 742). Consider the alternating harmonic series

1 1 1 1 1 1 1
S=l-g+3-1t5 5t 773" @)

If we multiply this series by % and insert 0 between the terms of new series, we get

1S—O+1+0 1+0+1+0 1+ (3)
27 2 4 6 8

Now we add the series in (2) and (3) to get

3 1 1 1 1 1
¥ty ottt )

Notice that the series in (4) contains the same terms as in (2).

o0 o0
Theorem 9. If > a, and > b, are two absolutely convergent series with sum A and B,

o n o n
respectively, then the product series >, > apb,— and any rearrangement of > > agby,—g

n=0 k=0 n=0 k=0

has a sum equal to AB.

Appendix

Proof of Ratio Test, page 739.

(a)

An+1

Since L < 1, we can choose a number r such that L < r < 1. Since lim = L and

n—oo

n

L < r, the ratio
such that

An+1
an

will eventually be less than r; that is, there exists an integer NV

Gp41

<r <= |apy1| < |an|r whwnever n > N.
Qn

In general, we get
lanik] < lansp—1|r < lansp—2|r® < --- < |an|r® forall k> 1.

By the Comparison Test, we know

anN|T
> Janl= z|aN+k|<z|a ph = lowlr

n=N+1
o0 [ee)
Hence )’ |ay| is convergent, and ) a, is absolutely convergent.
n=1 n=1
If lim || = L > 1 or lim || = oo, then the ratio |%**| will eventually be
n—oo | 9n n—oo | 9n On

greater than 1; that is, there exists an integer /N such that

Gp41
(2%

>1 <& |apt1] > |an| whenever n > N.

Since hm an # 0, the series Z a, diverges by the Test for Divergence.

n=1
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11.7 Strategy for Testing Series (page 739)

R R Em Al A A TE B R 7 X PIETHR BB E R (Absolutely Convergent). fEE{FI#K
(Conditionally Convergent) B(## (Divergent), LUK BFARHI 2 (E 05 LARE R ZE K
LN GIER Vb

PR B BB O E T EAIRERRF (Standard Operation Procedure), BLT
HERMRERESZ, UTHRAIRE Ll IRE &M EERIR 90% rHE. F TR
10% BRHEREFRMRE, P15 25, 35, 36, 38, 50, 62, 65 &, &AL FAIERHEIF AT
FRHMEE, R RMA LS,

(1) O —EEIERHE LT REE AR R B B B AL

o p-iREL (p-series) Y 4 MWREUE p > 1 KRKEL, & 0 < p < 1 FREEHL

n=1

o H—MERFLHHE (geometric series) i ar"t: WREE |r| < 1 BRIEL &
n=1
Ir| > 1 FFEEL
(2) IR (order) FIELE D MBZMEE Kk (A.C.). BAFHE (C.C.) BRHEE
(Div.), & RAHE ANERIERWOT:

l<hngnf<ad"<nl<n", HFE>0a>1

(3) FHEERER (FIBE), BHAR,
o HEH R, SRR MEMN] = HEARRE (CT, LCT).
o MATELLEZEAN [HH5R ), BB AT = {EE (Ratio T).
o MBI (b,)" = WA (Root T),
o MHBEARHE = B IE (AST),
o FHEREEL, BIA0 Inn, B ERGEE (LKA LIES = B2k (IT).
o #H = (DT), BRT AST LISMY#IBREERE 7T sE FE,

(3) FTH 10% EEEIBIFIRECAEN B RAIEH (order), LHABHHME, W EIE

ANN1= R}
AR,

(4) HEEZ sinn, cosn,sin =, cos 1, tan + FEFHTTAARH, ATRE 14, 21, 22, 23, 24, 34,

45, 55, 73, 87 FEHI o
(5) AT RRPR A B P AR BB B AL

limcosz = 1 lim 8oz — 1 lim &8z — 1
z—0 z—0 7T z—0 T
lim a=1 lim /x =
T—00 r—r00 1
. l X — . ; —
xll_{go 1+ =e i%(ljwc) e

El;Eg;El
e

—-Z4Z5JTE3ZA

i R EE T2
&R BB
ERAEE A, X
B SRR R
it. B ZFEE—
ke, REE
JETRHE AR E I
. G R R
=HH? WHE
IR 5 B LR
BERMEEER
7 BT LLER
& (order) KT
R BUR R B L
HIEEGR. &NLVELT
T e R B R
HE EREHFH
2R —EREEN
i
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11.7 Exercises and 11 Review

E¥E  Determine whether the series is conditionally convergent, absolutely convergent, or

BGx1rFgH3ZU
G 1 > (2n+ 1)" e I oo I
il D D 23 S 330 DM
BEFHRIEE = = = =

BRIk
BB, REHE

ykﬁﬁﬁ%%ﬁﬁ s n22n71 e 1 ¢S} 1 oo kk}'
Bl T AR 5 ) 6. > 7. 8. §
fii_é? T B = (5" —2n+1 = nVinn = (k+2)
aff 34k o
= > 3 < /11 > 1
9 E k2e™F 10 E ne”" 11.§ ( ) 12.§
k=1 n=1 n=1 3n k=1 k k2 + 1
3np2 sin 2n ok—13k+1 n?+1
13. z_: — 14. E_ o 15. > — 16. E_ e
n=1 n=1 k=1 n=1
o0 o0 o0 oo
n! (=nn—t Inn n2 —1
17. - - 18. 19. —1)n—= 20. A
Zo5 @) 2 PR 2

oo 1 oo 1 oo 1 o) 1
21. ) (—1)"cos (F) 22. ) o 23. ) tan (;) 24. ) " nsin (5)
k=1

oo oo oo oo 1
n! n?+1 klnk en
25. E — 26. E 27. E - 28. E —
n=1 er n=1 5n k=1 (k + 1)3 n=1 n2
oo oo q oo oo
=n" i Vi 5k (n)n
29. E 30. E (—1)7 - 31. E ok 32. E 1
oy coshn = J+5 = 3+ 4 o onAn

s n? 0 (e} 1 oo 1
3.3 () .30 3.3 3.3 G

+ ncos2 n

3

Il

©

S

+

3=

3

Il

©

7.3 (va-1)" S (V3 " o~
37, 31 38. 31 39. 40.
2 () 2 () & PR TR

w

41. 44.

42. i " 43.

8
23
3
+
[t

8
:l\)

— -
=

3

i
5

N
w

S

+

[

N—

3
Il
-
3
Il
-
3
[|
¥




11.7 Strategy for Testing Series goo.gl/1HDd1D 23

2. cos3n > (2n —1) >\ (=5)2"
45y 2 46. AR T Y
> PO S S et > o
n=1 = n=1
o0 o0 oo
v 1-+vn-1
49. 3" (- ! vn 50. > vrtlzvn=l g S ()" ns 52. § (-1)""1n
n=1 n+1 n=1 n n=1 n=1
oo oo oo nim oo
(=D"(n+1)3" (=D"vn cos (%) (=2)"
53. Elw 54. Elv 55. ElT 56. El o
n= n= n= n—

57. i (27:2111)71 58. i (;i"l)m 59. i (1 + %)n 60. i EZL));

n=1 n=2

> 100 n S S n e
n100100 n! 2l \/E—1
61. - 62. 63. 64.
> ™ > 2 3 > w2 > 1n4
65. 5 Vn+l (1 - 7) 66. - 67. 5 (=) 68. S (1)1
2 Vrrtlimees, ) 66 e 27 Gy 2

_q{yn— © 1 — [\
69. Z(tan n)" 70. Z ((mw 71. Z In(n!) 2. Z <ﬁ>

> 1 > 1 > /1 1 > 1
73. ntan — 74. E _— 75. E (——sin—) 76. E
n=1 2n n=1 (ln(n—l—l))” n=1 n n n=1 (2n2+n+1)
oo oo oo
(=)™ (-1)"vn (=)™ (n+1)! n+1
77. - 78. - LY 79. R LA 80. )"
> Tin > o > Z(
n=1 n=2 n=1
1-3 1-3-5 1-3-5-7 ,1-3-5----(2n—1)
81.1— —= — cee (=)t .
TR a Tty @1
2 2.6 2:6-10 2-6-10-14 2-4-6----- (2n) > 27n!
82. = 4 - — ... 83, L 7 "
5ts s 5811 581114 ; n! ; 5.8.11-+++-(3n+2)
1 1 1 1 1+2 1
8%, — - — 4+ — — — 4 - 86. 1+ + + tn 87. sin +sm—+ +sin1+---

2 I1n3 ' Ilnd 1Inb 1rz Tt et 2 22 on
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11.8 Power Series (page 746)

Definition 1 (page 746). A power series (FARE)) is a series of the form

o0
g ent™ = co+ 1+ o fegad -

n=0
where z is a variable and the ¢,’s are constants called the coefficients ({R8{) of the series.

A power series may converge for some values of z and diverge for other values of z. The

sum of the series is a function
f(x) =co+cr1z+caa® + ez + -+ cpa + -

whose domain (FEZHK) is the set of all x for which the series converges.
O MeEmsy wEscE [2ER] R — 2 TERER,
L] MERE] 2—EE# f(z), BN ERTRRBRSATRNES.

Example 2 (page 746). If ¢, = 1, the power series becomes the geometric series
o
dat=14azta’ a4,
n=0

which converges when and diverges when

Definition 3 (page 747). A series of the form

ch(x_a)n:CO+01($—a)+c2(g;—a)2+...

n=0
is called a power series in (x —a) (LA (x — a) FERBIFERRE) or a power series centered at a
(M a BHOLRIESRED) or power series about a (BF o FFERE).
L #E (z—a) =1, BME 2 = o tWRAE.
L] EARIBAR o WREREL, UTE x = o W8, FIUERBINEBBEIEEES,

o0
Theorem 4 (page 749). For a given power series Y, c¢,(x — a)™ there are only three possi-
n=0
bilities:
(a) The series converges only when r = a.

(b) The series converges for all x.

(¢) There is a positive number R such that the series converges if |x — a| < R and diverges

if |z —a| > R. (EELEEZETTE, nEREITREREIME,)
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Definition 5 (page 749).

(1) The number R in case (c) is called the radius of convergence (WHPR) of the power

series.
(2) By convention, the radius of convergence is R = 0 in case (a) and R = oo in case (b).

(3) The interval of convergence (W) of a power series is the interval that consists
of all values of x for which the series converges. When z is an endpoint (¥i#5) of the

interval, that is, x = a &+ R, anything can happen — the interval of convergence could be

(a—R,a+ R) (a — R,a + R] [a— R,a+ R) [a — R,a+ R].

Example 6 (page 747). Find the interval of the convergence of the following series: Fﬁ
R
oo oo (—1)n$2n oo 1 =
(a) Z nlx™ (b) Z I ()T (Bessel function of order 0) (c) Z E(az —-3)". ‘fmeCHWS
n=0 n=0 n=1 EENEE, RT
. HEgHEmLE
Solution. A3 B o e K

B, MEGNER
(order) HIBEEZ
o




YMXmwlzqXZY
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ER—EEAEH
THECAT DUESA 5
MR R . B
pAESH TAR]
TEEEE T Ak
T T2 AL ARG
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FAR B A Ak R P
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TERHIE, BBZH
H— A E s>
s, EE (a)
HfEd, MaokE
BRI T
RS n =1,
2 BRI —&EH
EHETGEER
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11.9 Representations of Functions as Power Series
(page 752)

In this section, we learn how to represent certain types of functions as sums of power series. We
will see that it is useful for integrating functions that don’t have elementary antiderivatives,

for solving differential equations, and for approximating functions by polynomials.

Example 1 (page 752). Recall that the geometric series:

1
1_x—1+x+w + a8+ Zw if |z] < 1.

We can express the following functions by manipulating geometric series:

1

W 15z =

Differentiation and Integration of Power Series, page 754

[e.°]

Theorem 2 (page 754). If the power series Y cy(x — a)” has radius of convergence R > 0,
n=0
then the function f(x) defined by

f(z) =co+cr(z—a) + cz(z — a)? chx—a
is differentiable (and therefore continuous) on the interval (a — R,a + R) and
(a) f'(x) =c1 +2c(z — a) + 3cz(z — a)? chn z—a)" L.
)/f(ac)dx:C—i—co(ac—a)—i-cl(x_a)Q+02(x_a) —C+chﬂ
2 3 n+1

L) MEms f M%) —, WILAREMSY. BEMSY, T [P g

(term-by-term differentiation and integration)
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U EFEREETN (a), (b), BB ERE:

d o
(a) a(;)cnx—a )

o0

n=0

4
dx

(cn(z —a)")

b) / (g en(x — a)") dz = g/(zn(m —a)"dz

O TR ) AR RS TS | AR (e e o), ATin B — B TR,

Example 3 (page 745). Express the following function as a power series and find its interval &

of convergence.

Solution.

(2) ()

=In(1+x)

[5 1 A0 TSRAN, MRR | mIAgHe,

(&4 F1 TRA0. MRRR ) ATACH#E,

(3) h(z) = tan™! 2.

EiiE

SR

PKUbCAvWTrg

FERIFRIEH]
DB EHERRE
%, ERMOEH
SR B A
1, TR
WTREEN,

=EEGITFIEFERE
H, BARHEH
B K IEYIE
MRS EF T
A0S R B st
HIE, Al LUE
Pt =,



=

OnjTFhZc8yc

LR B RANR
FRE AT LU AR B
B, REE
B FRBE K ST
n RIBAFRIEREH E
FOFAR B
B IR

aDV_1SIgMKk

BRI HIZK
HIE BB B
R R EE K B
BEESFRERDSH
BESHE, B
RKERHM, EREF
—EREZT, &
FARER SRR, W
TR BEME S
DEZ TRIEAE
HEEECHENZE
HRERERN, A
BT E RS
ZE&.
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Solution.

Example 5 (page 750). Evaluate [ Tlﬂ dx as a power series and approximate f00'5

[ee]
(1) an”, lz] <1
n=1

correct to within 107,

Solution. We express the integrand and then integrate term by term:

1
1427

/ 1
1427

dx =

This series converges for

/0.5 1
0 1 + :E7

dx =

, that is

2) Y

n

1

2

Erﬁ Example 4 (page 758). Find the sum of each of the following series.

n

n

_1
1+27

dx

When we choose n = 3, by the Alternating Series Estimation Theorem, the error is smaller

than the term with by = ﬁ ~ 6.4 x 107, so we have

/0.5
0

1
1427

da ~
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11.10 Taylor and Maclaurin Series (page 759)

In this section, we will answer two questions: Which functions have power series representa- "
] Y

tion? How can we find such representation? o]
First, suppose that a smooth function f(z) can be represented by a power series: 025tBBoSHvs
5 3 ) E-HENEE
f@)=c+ci(r—a)+c(r—a)+cz(z—a)+- -, if |r —a| < R. (1) HmEEeEEr

REEEHT RN BURER
B MR
HEE-FR TR
& KA AR

Put x = a, then we get

: / _ WERERE, %
Since f'(x) ’ B R
REFER,
we put z = a and get . B EE RS
- HIEEHE, FERUS
B REIRE
Since f"(x) = , we put = a and get
By induction, since f*)(z) = , we have

Theorem 1 (page 759). If f(x) has a power series representation (expansion) at a:

then its coefficients are given by the formula ¢, =

flz) = ch(:n —a)" for|r —al| <R

n=0

1) (a)

n!

Definition 2 (page 760). Given a smooth function f(x), define the Taylor series of the HBIF®F®, B

BB AE R — BT

function f(z) at a (or about a or centered at a) (BB f(z) T z = a RRIEERED) by [y aepup—
o o )( ) ) "a) B, BB LUE
et o= [ (a f'(a (a HRYBYHEE
Te) %) - @-a"=f@+3r@E-a+5=@-a’+-. (2) o, ze
n=0 HRIEREM LR
B E R
For the special cases a = 0 the series (2) becomes BB TS AR Y
B %o
M 32TV ) SO, SO
™) = A TR TR AR TERME TR
n=0 BsRE, B
IR N GUOE S )
This case the function M (z) is given the special name Maclaurin series (BT MRE). %&%ﬁl;lﬁﬁ Hm
os , _ FAIE— P
U ERiEERALE: [ f(v) IRRREREE, B f(x) IERNRSBRE T (2) —3 HHH AR, B
ALMEA T,

LI BMpZER (FF52): AL S (1L 8RR (FEREIRER TR )
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iE EBIRER K
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B EERI
R BT R
Wbt A T R
FAR BE0 IR
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xvg6yDTPmq8

T ERBRERY
mH, BREEM
IR RS
Fo HILHRHR
o kmEs, —
B2 n KRGS
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SR (VB A=pRIET] o4
RERHRBEE
WIS E R ERTE
[ EBlini SN IS
aisiee Lt i)
7, BEREEH
TEHR RN,

30 11.10 Taylor and Maclaurin Series goo.gl/7ZQuaN

Example 3 (page 760). Find the Maclaurin series of the function f(x) = ¢* and its radius

of convergence.

Solution. Since f(z) = , we know that f(0) =

Therefore the Maclaurin series of f(z) = e” is

foralln € Norn=0.

o0

0 .,

To find the radius of convergence, we let a,, = , then

Ap4-1
QA

By the , the radius of convergence is

Question 4 (page 761). Under what circumstances is a function equal to the sum of its

Taylor series? In other words, if f(z) has derivatives of all orders, when is it true that

? def. > (n) a def. .
f) L) 2 S Ty i 1),
n=0
where
n ek (g 'a ™(q
@)=Y 00w = p@+ Dy D8y

k=0

Definition 5 (page 761).

(a) The polynomial T, (z) in (3) is called n-th degree Taylor polynomial of f(x) at a (f(x)
E x = a iy n-FERGLERN).

(b) Define the remainder (B3%) of the Taylor series as r,(z) = f(z) — Th(x).

Theorem 6 (page 761). A smooth function f(x) = T(x) on the interval |x — a| < R if and
only if li_)m ro(z) =0 for |x — a| < R.

Proof. (=) Since f(z) = nh_)llolo T, (z) and rp(z) = f(x) — Tp(x), we have

lim r,(z) = lim (f(x) — T,(z)) =

n—o0

f(z) = lim T, (x) = f(x) = f(z) = 0.

n—oo

(<) Conversely, since li_>m rn(z) =0 and T,,(z) = f(x) — rn(x), we have

T(x) = lim T,(z) = lim (f(x) —rn(z)) =

n—oo n—oo

flx) = lim ry(x) = f(z) — 0=

n—oo

f ().

[ 8% e G EERHRE THHR ], ARGREN s EE | —2WESE,
[ EEEH: ML RSRBEHKMEER S OEEEER [SREELPRE.
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Question 7 (page 762). How do we show that lim r,(z) = 0 for a specific function f(x)?

n— o0

Theorem 8. Suppose that f(x) has continuous derivative at x = a up to n+ 1 order, then

' (n)
fa) = f@) + D -0yt Doy (@) = T@) 4 1),
where ryp(z) = %(w —a)"", ¢ is a number between a and .

Proof. Without loss of generality, we assume a < x. Consider the function

f(t F (¢ .
o) = @)~ 1)~ L0ty - T gy
then g(t) is continuous on [a, ], and
eIt O B
J0=- 2 e 0 - e -0
k=0
P ARIO) (#) k—1
=— o (z —t)* + Z ' —1)
k=0
f(k+1 ( f(k+1 t K f(n+1)(t) .
k=0
Let h(t) = (z—t)"*L, by the Cauchy Theorem (generalized Mean Value Theorem), then there
exists ¢ € (a,x) such that
e+ () (z—c)"
g0 _gx)—gla) TG 0w
R'(¢)  h(xz)—h(a) —(n+1D(x—-c” 0-—(z—a)ntlt’
S0
f(n+1)( ) n+1
rn(x) e x—a)"".

U 80 MOEER ] WERRA, fERRNRYSER &, ARERMSERAA

Once we have this expression of the remainder, we can estimate it by the following theorem.

Taylor’s Inequality (page 762). If |f™+tV(x)] < M for |z — a| < d, then the remainder
rn(x) of the Taylor series satisfies the inequality

(n+1) (e
ﬁn+$3@_awﬂ =

< (n+1)!]az—a\”+1 for |z —a|] <d.

[ (2)| =

903ROGCtI1M

6 7T — 18 o 2
W EER R
WA S
2 8 A 12
=, HREERT
WY, BEFEEN
RIERERE, &
I i A
P, E—HTE
RAERIT 6
W, SeisE
2R S EM
) Fem B — T
B, HEE
THEHH RN TS
e

RYAEFAN—H
HEREH n+1
R BRIAEEIE
INBERS M, 321
M THERT n HFRA,
BT ARG R
FFEHEHTS
FRHEERE,
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Example 9 (page 763).
(1) Prove that e” is equal to the sum of Maclaurin series.
(2) Find the Taylor series for f(z) =e* at a = 2.
Solution.

(1) If f(x) = e, then f(™(z) = ¢® for all n € N. Given x € R, there is a positive number
d such that |z| < d. Since |t (z)| = e* < e?, we get

f(n+1)(0) n+1

f
(n+1)! o

(o)l |

lz| < d.

Notice that e? is a number independent of n, so we have

n+1 —

By the Squeeze Theorem lim r,(z) =0, and e* = Y~ La" for all z € R.

n—00 n—0

(2) We have f(™(2) = e?, so the Taylor series for f(z) =e® at z = 2 is

Another viewpoint is

Example 10 (page 764). Find the Maclaurin series for f(z) = sinz. Prove that it represents
sinz for all .

Solution. We compute for £ =0,1,2,3, ...,

f(4k+1)(x) _
f(4k+1)(0) _

f(4k+2) (z) =
f(4k+2) (0) _

f(4k+3) (LE) —
f(4k+3) (0) _

F@)
749(0)

so the Maclaurin series for f(z) = sinz is

Since f(™*1(z) is +sinx or & cos z, we know that |f("+t1)(z)| < 1 for all z € R. By Taylor’s
Inequality:

()] =
Since lim , we have lim r,(x) = 0 for all z € R by the Squeeze
n—o0 n—oo
S n
Theorem. Thus sinz is equal to the sum of its Maclaurin series ) é;}r)l)!a:%*l.
n=0
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Example 11 (page 764-765).

(1) Represent f(x) = sinz as the sum of its Taylor series centered at z =
(2) Find the Maclaurin series for cosz.

(3) Find the Maclaurin series for z cos x.
Solution. We have for Kk =0,1,2,3,...

f(4k)(33) — f(4k+1)( ) — f(4k+2)(33) —
j%4k)(§) — j%4k+l)(%) — j{4k+2)(

(1) The Taylor series at % is

f(4k+3)(
)= )

8
8

wly

(2) Instead of computing derivatives and substituting in the Maclaurin series for cos z, we

can differentiate the Maclaurin series for sin z:

COST =

Since the Maclaurin series for sinz converges for all z, the differential series for cosx

also converges for all x.
(3) We can multiply the series for cosx by x:

T COST =

Example 12 (page 766). Find the Maclaurin series for f(x) = (1 + )™, where m is any real EE;

number.

Solution.

Therefore the Maclaurin series for f(z) = (1 + )™ is

ln

)=

=
1VQXTH3EXEY

ERLER BB R
REEIBALR, HAT
DM w753
FHRE—-R. &
P ERE 2
i —e = K
HIBA RER R
BB EM Y B E
HOERKE. &
R HERR B
R E L
BRI, R
TR L s
R R Ffo

s7gCTjaAgkI

BRAEENRNZE
HARBEERY
BB B
FIHRREL
HA KB REH
BERRHR ERE
B ZIHEARBII R
F m AR R
HEH.
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Example 13 (page 766). Find the radius of convergence of the binomial series (Z TERREL,
BT 5 mollfonti)n

n=0

Solution. If m is a nonnegative integer, then the terms are eventually 0 and so the series is

finite. For other values of m, if the n-th term is a,, then

an+1
Gn

By the , the binomial series converges if and diverges if ,

and the radius of convergence is

The Binomial Series (page 767). If m is any real number and |z| < 1, then

m(m—1) o m(m—1)(m—2) 4
(I+x)™ ZC’m"—1+m:ﬂ—|— o1 <+ e o4
n=0
The interval of convergence depends on m: (—1,1) if m < —1; (—=1,1] if =1 <m < 0; [—1,1]
if m> 0.

[ B R EMI R T LRI, A H AR 7733 E A O AR S [ L.

Definition 14 (page 766). Numbers C = mm=Dm=2)--(m=nt1) .0 called binomial coeffi-

n!

cients (ZIEAFREL). Remark that CJ* =1 for all m € R.

1

i and its radius of con-

Example 15 (page 767). Find the Maclaurin series for g(x) =

vergence.

Solution. We rewrite f(x) in a form where we can use the binomial series:

Using the binomial series with m = and with x replaced by , we have

The series converges if , so the radius of convergence is
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Important Maclaurin series and their radii of convergence
1 = n 2 3
(1) 1_3322_;)96 =l4+z+a+2°+--- R=1
5 x_ooaz"_l r 22 23 R
()e—z;)m— tgtor gt =0

o
1" 2n+1 3 5 7
(3) sinw:Z()ix:x_x__Fx__x__F...

2 (2n+ 1) 3BT
(4) COS%:;%:l_g—F%_%—P”
(5) tan™! :g(_;?—fzﬂzx_f—i_;_x_;—i_“
(6)ln(1+x):g%:$—§+§_a’;+.“

m(m —1)(m — 2) n

= -1
(7) (1+x)m:ZC’gbx”:1+mx+m(m )3:2+

n=0
Example 16 (page 768). Find the sum of the series

1 1 + 1 1 n
1-2 2-22 3.23 4.24 '

Solution.

e —1—=x

Example 17 (page 769). Evaluate lim 5

xz—0 x

Solution. Using the Maclaurin series for e”, we have

oef—1—zx
hm72:
x—0 xT

because power series are continuous functions.

>
I
8

nduOzmvTjXc
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HIBAR. BT LL
ERER. AFEME
FEIR BT
up R EIES] SGRES
B B
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BRI EIRIE
A, ek
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SRR AR
Rt P DASR R B
MR BIR BOETT I
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E o RS U
BEBE T R
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EERRESER
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Multiplication and division of power series, page 770

Example 18 (page 770). Find the first three nonzero terms in the Maclaurin series for (1)

xT

e’ sinx and (2) tanz.

Solution.

Example 19 (page 768).

(1) Evaluate / ¢~ dz as an infinite series.

1
(2) Evaluate / e~ dz correct to within an error of 0.001.
0

Solution.

(1) We replace = with —z? in the series for e* and get, for all z € R,

We integrate term by term: / e dx =

. . _m2 .
The series is convergent because e is convergent

(2) We compute

1 2
/ eV dr=
0

~
~

The Alternating Series Estimation Theorem shows that the error is less than
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11.11 Applications of Taylor Polynomials (page 774)

In this section we explore some applications of Taylor polynomials. Computer scientists like
them because polynomials are the simplest of functions. Physicists and engineers use them
in such fields as relativity, optics, blackbody radiation, electric dipoles, the velocity of water

waves, and building highways across a desert.

Approximating Functions by Polynomials, page 774

Recall that the linear approzimation of f(z) at x = a (in section 3.10):

f(@) = f(a) + f'(a)(z — a) (1)

Right hand side of (1), called the linearization of f(z) at x = a, is the first-degree Taylor
polynomial T (z). If f(x) is the sum of its Taylor series, then T,,(x) — f(x) as n — oo, and

so T, (z), nth-degree Taylor polynomial of f(z) at = a, can be used as an approximation to

f(@):

z —a).

n (g
Fla) Ty = 3
k=0

When using a Taylor polynomial T),(x) to approximate a function f(x), we have to ask that
how good an approximation is it? How large should we take n to be in order to achieve a
desired accuracy? To answer these questions we need to look at the absolute value of the
remainder |r,(z)| = |R,(x)| = |f(z) — T,.(z)|. Here we remark that if f(x) is the sum of its
Taylor series, then r,(z) = R, (x).

There are three possible methods for estimating the size of the error:

(1) If the series is an alternating series, we can use the Alternating Series Estimation The-

orem.
(2) In all cases we can use Taylor Inequality: If |+ (z)| < M for |z — a| < d, then

M
(n+1)!

£ (0

m(x _ a)n—l—l <

rn(2)] = |z —a|"™ for |z—a| <d.

(3) If a graphing device is available, we can use it to graph (estimate) |R,(x)|.
Example 1. Desmos Graphing Calculator is a free, online, graphing calculator:

https://www.desmos.com/calculator

https://desmos.s3.amazonaws.com/Desmos_User_Guide.pdf

We will illustrate Taylor polynomial approximations by Desmos Calculator with some impor-

tant examples.
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Example 2 (page 775).

(a) Approximate f(x) = /z by a Taylor polynomial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 < z < 9?

Solution.

(a) We compute

f'@) =
f'(®) =

So the desired approximation is

\3/5 ~ Tg(l‘) =

f(x) =
f"(8) =

(b) We can use Taylor’s Inequality with n =2 at a = 8:

[ra()]

IN

<

fl//(x) —

Thus, if 7 < 2 <9, the approximation in (a) is accurate to within

Example 3 (page 776). What is the maximum error possible in using the approximation

sinx ~ x — ?,’—? + gg—? when —0.3 < x < 0.37 Use this approximation to find sin 12° correct to

six decimal places.

Solution. Notice that the Maclaurin series sinz = = — g—? + E—T —

ZC7 . :
Tt s alternating

for all  # 0, and the successive terms decrease in size because |z| < 1, so we can use the

The error in approximating sinx by the first

three terms of its Maclaurin series is at most

ki
=2 <
5040 —

27

7!

To find sin 12°, we first convert to radian measure:

in12° — si Y —an (T
sin 12 —sm(12 180) s1n(15)

~
~

Thus, correct to six decimal places, sin 12° ~
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Applications to Physics, page 778

Example 4 (page 778). In Einstein’s theory of special relativity the mass of an object moving

with velocity v is

where my is the mass of the object when at rest and c¢ is the speed of light. The kinetic energy

of the object is the difference between its total energy and its energy at rest: K = mc

(a)

(b)

2—m002.

Show that when v is very small compared with ¢, this expression for K agrees with

classical Newtonian physics: K = %movz.

Use Taylor’s Inequality to estimate the difference in these expressions for K when
lv] <100m/s.

Solution.

(a)

Using the expressions given for K and m, we get

1
2 2\ ~ 32
moc v
K:mc2—moc2:7—771002:771062 <<1——> —1).

v2 c2
V&

With z = —%, the Maclaurin series for (1 + )~ is a binomial series with m = —1.
c 2

Therefore we have

_1y(_3 1y 3y (5
ANENETNEIS PSS IS I
3 5

and

- cXS6MnYExU

EASETRELRE e
B EA T2
B R AT LUFI R ED
Wi 77 v B R
B R EF AR TR
BRETHSES

2HE.,

1 02 4 6 102 4 6
K:m062<<1+_’u_+§v_+ b v +"->—1>:moc2< Y +3v + b v +>

2¢2 8¢t 168 2¢2 8¢ 168
If v is much smaller than ¢, then all terms after the first are very small when compared

with the first term. If we omit them, we get

2¢? 2
Let f(x) = moc? ((1 +x)_% - 1) with z = —Z—j. We can use Taylor’s Inequality to
write
"(x 2
ri(z) = @) 2(!0) z?,  where — 2—2 <é<0
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Since f”(z) = 2moc®(1+ 2)™2 and we are given that |v| < 100m/s, so
3moc? < 3moc?

4(1+0)°% 41— 1005

c2

1f"(@)] =

Thus, with ¢ = 3-108m/s,

3moc? 100%

1
5 T < (4.17 - 107 0)my.
4(1-15)°

ri(2)] =

So when |v| < 100m/s, the magnitude of the error in using the Newtonian expression
for kinetic energy is at most (4.17 - 10719)my.

Appendix

"-1* A,
tnkfRWtE4UT f(z) = e HoFl :
0 ifz=0
EEPIFESE L
WRRRES, 38 (a) The function f(z) is continuous on R because
T B R 5
HHS R ER [ |
B T 0 LM lime™=* = lim e ¥ = lim — =0= f(0),
z—0 y—+too y—+oo e¥

T, H (a)
(d) WA FmATEE
AR T2 ) .
BEREAENE — 2z, that is, f(x) = (g 0 h)().

o Bk, R

T n B, %% (b) We will show that: For z # 0, f(z) = P,(y)e ", where y = 1 and P,(y) is a poly-
MIREE—5, P

and for x # 0, f(x) is a composition of two continuous functions g(x) = e* and h(z) =

nomial of y with degree 3n.

DAERIEFEIE LB,
3 5 AT BEREE
e, (1) When n = 1, we compute
df dfdy  _, 2 2
/ = = — — = y—2 _2:23 y:P Y
P == qyae ¢ - (y) =2 1(y)e™,

where P;(y) = 2y° is a polynomial of y with degree 3.

(2) Assume that it is true for n = k, that is, f*)(z) = 3%{ = Py(y)e V", where Py(y)
is a polynomial with degree 3k.

(3) When n =k + 1, we compute

£ () = dittyddff d (dkf> dy

d 2
= = _ < - _ |2 )L ="|(P -y .2
dzktl  dxdazk  dy \dzF ) dz dy ( k(y)e ) (=v")

- (4B ¢ pe ) (07

dP, \
= <—y2$ + 2y3Pk(y)> e V.

Let Pri1(y) = _yz%y(y) + 242 Py (y), which is a polynomial of y with degree
3+3k=3(k+1).
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(4) By mathematical induction, we know that for  # 0, £ (z) = P,(y)e™¥", where
Y= %, and P, (y) is a polynomial of y with degree 3n.

(¢) Now, we will show that f(")(0) = 0 for all n € N.

(1) When n = 1, we compute

_ - —y?
£(0) = lim L@ =FO) e — lim
z—0 x—0 z—0 X y—+oo m
20y I/
~ im LG =0
y—rFoo e¥ y—Foo 2yeY

(2) Assume that it is true for n = k, that is, f(*)(0) = 0.

(3) When n =k + 1, we compute

K () — (k) (k) —y?
z—0 x—0 z—0 xT y—+oo m
T 7 1)
y—Foo ey2 ’

Remark that we can apply I’ Hospital Rule [%] times to get the limit is 0.
(4) By mathematical induction, we know that f((0) = 0 for all n € N.

(d) Since f(0) =0 and f(™(0) = 0 for all n € N, the Maclaurin series of f(z) is

a4 =0,

> r(n) / " (n)

n=0

This is a zero function, so the interval of convergence of M (z) is R. We compute the

remainder

We get for any = # 0, li_)rn rn(x) = e w2 # 0. Therefore, f(x) is not equal to its
n o

Maclaurin series.

(e) For any integer k > 0, let C*(R) be the set (in fact, it is a vector space) consisting of
all functions f(x) that the derivatives f’(z), f”(z),..., f*)(z) exist and are continuous
on R. So C%(R), which is also denoted by C(R), consists of all continuous functions on
R, and C*®(R) = N ,C*(Q) consists of all smooth functions (continuous derivatives of

all orders) on R (JBIEEE).

Denote C¥(R) be the set consisting of all smooth functions f(x) that for all x € R,
there exists R > 0 such that f(x) equals its Taylor series expansion on (z — R,z + R).
We say a function f(z) € C¥(R) is analytic (FEITIHE).

EHEGEEATTR
Ck(R), £7 k K
K B EER
HEFTER & A,
M C>(R) W
R HR
HEEEE, B
RES FSRENR B E
MERTNHEEE
RTINS, EEL
C*(R) #T.
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(f) The above discussion shows that the function f(z) is a smooth function, but not an

analytic function because f(z) is not analytic at = 0. So the conclusion is C*(R) C

C=(R).

Remark that we have the following relations:

C*(R) ¢ C*(R)--- € C*(R) ¢ C'(R) € C°(R).

Example 6. Recall that the binomial series is

o0 o0

m_n m(m —1)(m—-2)---(m—n+1) ,
Cyla™ = x".
7;) 7;) n!

We will check the convergence of the binomial series at the endpoints.

(a) If m < —1, then

|Cn'a”| = [CR (1) = |G| =

— ) (m—n+1)

_ |mll(m = D)]|(m = 2)]---

‘mwhdxm

|(m —n+1)] S 1-2-3--m

n!

=1.

n!

n!

[e.°]
So the series Y C'a™ is divergent at x = 1 by the Test of Divergence.

n=0

(b-;) f -1<m<0and z =—1, then 0 < —m < 1, and

Since )

n=1

(=m)

n

m_n __
Crlla =

m(m—1)(m—2)---(m—n+1)

(=n"

n!

(=m) (A —m)2—-m)---(n—1—m)

n!
(-m) I-m) (2-m)

L=1-m) (m)

n 1 2

n=0

Comparison Test.

>

m(m—1)(m—2)---(m—n-+1)

n—1 n

o0
is divergent (p-series, p = 1), >  C'z" is divergent at x = —1 by the

(b1) If -1 <m <0and z =1, then ) 6 C'a" =
n=0

n=0

series. We compute

o = [ = Dlm = 2)

‘m(m—
n!
< m(m —1)(m —2)--

- is an alternating

mm—n+m‘

n!

so it is a decreasing sequence. Next, we calculate

Cn'l =

n!
m (m—1) (m-—2)

2 3 n

=)

m(m—l)(m—Q)---(m—n+1)‘

(m—n+U'

mm—n+DHm;?

= ’C:Ln—l—l‘?
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Since
m < m+ 1 - m+1 "ot
k=1 = k=1
|
:-—(n1+—1) E
k=1
and lim Z%: %—oo,weget
n=o0 1 n=1
In ( lim |0,§n|) = lim In|C™| = —c0 = lim |C™] = 0.
n—oo n— oo n—oo

[e.°]
By the Alternating Series Test, > C/"z"™ is convergent.

n=0

Before we check the case m > 0, we introduce the Raabe’s Test:

(o @]
The Raabe’s Test. Suppose a series Y a, satisfies

n=1

Ap41
QA

lim

n—oo

=1 and lim n
n—o0

then the series is absolutely convergent.

o
Remark that the p-series > L satisfies the condition, so the Raabe’s Test is a Com-

npP
n=1

parison Test with p-series.

—1>: lim n(
n—oo

= lim n(\m—n! —1)
n—00 n4+1

If m > 0, then

m
n+1
m

lim n<
n—oo

n

o0
By the Raabe’s Test, Y Cp'z™ is convergent.
n=0

N 1> - nh—>ngo n ‘m(m—l)---(m—n-ﬁ-l) ‘
n!

Ap41
Qp

(- <

‘ m{in=1)-(m—n)

. n—m
:hmn< —1)
n—00 n4+1

LXU6C8dE4ws

Eom > 08, =
B BB R4
TR B
IR, FEBE
%8 Raabe #I31
%o
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o
E2 -. Example 7. We will prove (1 +z)™ = Y C"z" on |z| < 1.
X n=0

o0

(a) Let g(x) = > C™z™ on the interval of convergence (—1,1). We will show that
EAERE EHAK n=0

622Ak1£5060

W B 2B W (14 x)g'(x) = mg(z) on the interval of convergence (—1,1).
HECEH, TR 00
BE R T RERR We compute ¢'(z) = Y C™nz™ ! on the interval of convergence (—1,1), and
FEREMIREN =
AR, mRRH%S
ek inpaR:aY e s e
(1+2)d () =(1+2z) Z Cmpz" ! = Z Cmpz™ ! 4 Z Cr'nx"
n=1 n=1
Z ma(n 4+ 1)z" +ZC’mnaj
n=0
B > m(m—1)(m—2)---(m—n—l—l)(m—n)(n—l—l)xn
= (n+1)!
[e.e]
m(m —1)(m—2)---(m—n+1)n
L3 2) - .
n!
n=0
B > m(m—1)(m—2)~-(m—n+1)((m—n)+n)wn
o |
~ n!
o
=m Z Crla" = mg(x).
n=0

(b) Solve the differential equation (1 + x)¢’'(z) = mg(x),g(0) = 1,|z| < 1. Tt is separable

equation, so we have

o = Tis > ddx(l g(x )):Hix;»mg( z) =min(l+z) + C.

Since g(0) = 1, we know that C' = 0. Hence Ing(z) = mIn(1 + z) = In(1 + 2)™ and it

o0
implies g(z) = >, C'a" = (1 +2)™ on |z| < 1.
n=0




