4.1 Maximum and Minimum Values goo.gl/8FNtRj 1

Chapter 4 Applications of Differentiation

4.1 Maximum and Minimum Values, page 276

Definition 1 (page 276). Let ¢ be a number in the domain D of a function f. Then f(c) is
the

oBLC£VT2JFO

(1) absolute mazimum value (FBEMAIE) of f on D if f(c) > f(z) for all z in D.
(2) absolute minimum value (&EH/NME) of f on D if f(c) < f(x) for all z in D.

[] Absolute maximum (or minimum) BEHEMIEE global mazimum (or minimum).

U ArEf@EmAE. B MERBREE f WA (extreme values).

Y Y

Figure 1: Absolute maximum value and absolute minimum value of f.

U] plEri@ermiEns, LEEZEBRA [FiE] (for all) FBEEBEHMILE,

Definition 2 (page 276). The number f(c) is a
(1) local mazimum value (FFEFAIE) of f on D if f(c) > f(x) when z is near c.
(2) local minimum value (FFESH/IME) of f on D if f(c) < f(x) when z is near c.

We say that something is true mear ¢, we mean that it is true on “some open interval

containing c.”

Figure 2: Local maximum value and local minimum value of f.

U B m(Er E &, (HHE] (near) EMHEFAREE.
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?gﬁ% Example 3. State the absolute (and local) maximum (and minimum) values of the function
TR Y= f(2).

efbompPs1hs

~
/I

Figure 3: Find absolute (and local) maximum (and minimum) values of the function.

Solution.
(a) Absolute maximum:
(b) Local maximum:
(¢) Absolute minimum:
(d) Local minimum:

Theorem 4 (The Extreme Value Theorem, B{EEH, page 278). If f is continuous on a closed
interval [a,b], then f attains an absolute maximum value f(c) and an absolute minimum value

f(d) at some numbers ¢ and d in |a,b].

L] mEEmAgEe= (PR Rr FEERE

L] mfE E B RS a T

Example 5. Give examples that if f is not continuous, or f is continuous on (a,b), the

Extreme Value Theorem does not hold. Plot a continuous function that it attains maximum

values and minimum values at more than one number.

Figure 4: Study the Extreme Value Theorem.
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Theorem 6 (Fermat’s Theorem & EEH, page 279). If f has a local mazimum or minimum EEgEE
b ol
at ¢, and if f'(c) exists, then f'(c) = 0. &

X3SRnYvweSQ

L] & “f'(c) exists” REE, KA °
U —msS, &5 SHERYCERE, fian: o

Proof. Here we prove the local maximum case. Since f(c) > f(x) if = is sufficiently close
to ¢, this implies that if A is sufficiently close to 0, with A being positive or negative, then
f(e) > f(c+ h), or equivalently, f(c+ h) — f(c) <0.
If h > 0, we have W < 0. Since f'(c) exists, we get

fle+h)—flo)

/ 1 o
fle) = Jim I -

If h <0, we have w > 0. Since f'(c) exists, we get

) = tim TR 1) _

Hence f'(c) = 0. O

Definition 7 (page 280). A critical number (FG5t%#5) of a function f is a number ¢ in the & o)
domain of f such that f’(¢) =0 or f’(¢) does not exist. =

TIa3VmnBS5ek

(] B&5E: (critical numbers) BAERS f 1 TEE] Ko

8

Example 8 (page 280). Find the critical numbers of f(z) = 25 (4 — 2) = 4z — 25.

Solution. We compute
fl(@) =

Therefore the critical numbers are

Theorem 9 (page 280). If f has a local maximum or minimum at c, then c is a critical

number of f.
O pEm Sy Ews f TEERTE, Al f RERTBAE, 1i%ERIE/IME”

The Closed Interval Method (page 280). To find the absolute maximum and minimum

values of a piecewise continuous function on a closed interval [a, b]:
(1) Find the values of f at the critical numbers of f in (a,b).
(2) Find the values of f at the endpoints of the interval, that is, f(a) and f(b).

(3) The largest and smallest of the values from (1) and (2) are absolute mazimum value

and absolute minimum value, respectively.

O KB 7i%k: R FTE R B En g, FLEAP LB BIE S K/
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4.2 The Mean Value Theorem, page 287

EEEE Question 1. A highway from Taipei to Kaohsiung is 330 km and the speed limit is 110 km/h.

h‘ﬁ Man A drove the car on the high way from Taipei at 9 : 00 AM to Kaohsiung at 11 : 59 AM.

s2Erilytek Did he exceed the speed limit?

Theorem 2 (Rolle’s Theorem, page 287). Let f be a function that satisfies the following three
hypotheses:

(1) f is continuous on the closed interval |a,b].
(2) f is differentiable on the open interval (a,b).
(3) fla) = f(b).

Then there is a number c in (a,b) such that f'(c) = 0.

Figure 1: Rolle’s Theorem.

Proof. There are three cases.

(I) f(z) =k, a constant. We have f’(z) = 0, so the number ¢ can be taken to be any

number in (a,b).

(I) f(z) > f(a) for some z in (a,b). By the , [ has a maximum
somewhere in [a,b]. Since f(a) = f(b), it must attain this maximum value at a number
¢ in the open interval (a,b). Then f has a at ¢, and f is differentiable
at c¢. By , we know f'(c) = 0.

(Im) f(z) < f(a) for some z in (a,b). By the , f has a minimum
value in [a,b], and since f(a) = f(b), it attains this local minimum value at a number

€ (a,b). By , f'(e)=0

L) es e, B f(v) L/BTE [EAE B L,
L) Esfett, BE f(o) LALRER [T#s ) (F—EE).
O e R Ea [EEE L
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Example 3. Give examples that each condition in Rolle’s Theorem is required.

Solution.

) ) )

x61RgE7n804

Figure 2: Study Rolle’s Theorem.

Example 4 (page 287). Prove that 3 4+ x — 1 = 0 has exactly one real root.

Solution.

Theorem 5 (The Mean Value Theorem, FH{EEM, page 288). Let f be a function that -.

ot
P

ZtR_UIq3vxQ

satisfies the following hypotheses:

(1) f is continuous on the closed interval [a,b].

(2) f is differentiable on the open interval (a,b).

Then there is a number c in (a,b) such that

f'(c) = biia) or equivalently, f(b) — f(a) = f'(c)(b— a).

Figure 3: The Mean Value Theorem.
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Proof of Mean Value Theorem. Define a new function
h(z) =

We will verify that h(x) satisfies the three hypotheses of Rolle’s Theorem.

(1) The function h is continuous on [a, b]: It is the sum of f and a first-degree polynomial,

both of which are continuous.

(2) The function h is differentiable on (a,b): Both f and the first-degree polynomial are

differentiable. In fact, we have

B (z) =
(3) h(a) =h(b) =0
h(a) =
h(b) =
By , there is a number ¢ € (a,b) such that h'(c) = 0. Therefore,

L sl edt R Bk E BEE ) MMl FE
L] St fE e s sl iy [ e )7

Theorem 6. If f'(x) =0 for all z in an interval (a,b), then f is constant on (a,b).

ssespmnsron L700f. Let 1 and x9 be any two numbers in (a,b) with 1 < x9. Since f is differentiable

on (a,b), it must be differentiable on (z1,z2) and continuous on [z1,z3]. By applying the

to f on the interval [z1,x2], we get a number ¢ such that x; < ¢ < 9

and

Therefore f has the same value at any two numbers z; and z2 in (a,b). So f(z) is constant
on (a,b). O

[] Theorem 6 F2Ht—{E%IHH 2K BRI .
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Corollary 7. If f'(z) = ¢'(x) for all x in an interval (a,b), then f — g is constant on (a,b);

that is, f(x) = g(x) + ¢ where c is a constant.

Proof. Let F(x)

O
U E&E f(2) = o Boglx) =1, BT € (—1,1) B e E R,
Example 8. Show that |tan £ — tan 4| > |x;y| for any z,y € (—7, ). ETE

&

Solution. If x =y, the inequality holds. If z # y, without loss of generality, we assume i

—m <z <y < m. Consider the function f(t) = tan %, then

o f(t)is

o f(t)is
By the , there is a number ¢ € (z,y) such that f(z) — f(y) = f'(¢)(xz —
y), which implies [f(z) — f(3)| = |f'(c)llz — y]. Since f'(t) = , we have |f/(c)] =

. So |f(x) = f(y)] > %|:L' — y|, which means

£ Y lz — |
n- —tan>| > — 2
ta 5 ta 9 5
Fheorem 9 (Cauchy’s Mean Value Theorem, (TP {EEH) Appendix F, A45). Suppose DjfpA0)

that the functions f and g are continuous on [a,b] and differentiable on (a,b), and ¢'(z) # 0

':---'-’.-'*
for all  in (a,b). Then there is a number ¢ € (a,b) such that biygdsTqE38

Proof. The key point is to find a new function F'(x) and apply the Mean Value Theorem.

Fx) =




[El EE
e
[=]
PwmK2Ha2SAA
Bz
i h
[=]

aBKa8s0dzCM

8 4.4 Indeterminate Forms and I’'Hospital’s Rule goo.gl/QwjMrw

4.4 Indeterminate Forms and I’Hospital’s Rule, page
304

In this section, we want to introduce a new method to deal with the limit such as

Definition 1 (page 304-305).

(1) If we have a limit of the form hin g ; where both f(z) — 0 and g(z) — 0 as x — a,

it is called an indeterminate form of type (B ZENTER).

(2) If we have a limit of the form hm gé 3 where both f(z) — oo (or —o0) and g(x) — oo
(or —o0) as & — a, it is called an mdetermmate form of type = (SRR K53 iz SRR KRR A
E).

L’ Hospital’s Rule (page 305). Suppose f and g are differentiable and ¢'(x) # 0 on an open
interval I that contains a (except possibly at a). Suppose that a limit has an indeterminate
form of type 8 or . Then

if the limit on the right side exists (or is 0o or —o0).

O Bumaemners: (1) RERTEL; (2) #E lin L8 REFE,
[ e s 8 T B R,
O B EERRATHAES, lim L8 2 im S8 £ £ lim L8 =

—a 9'(2) g—a 9P (@) —

Example 2

t—In(1+¢
(a) Find III(I)I %

t—In(1+t)

(b) Use (a) to find lim 7

t—0+

Solution.
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Indeterminate Products, page 308

Definition 3 (page 305). If we have a limit of the form lim f(x)g(z), where lim f(z) = 0 EligRE

T—a T—a L, gl

and ligl g(z) = 0o (or —c0) as x — a, it is called an indeterminate form of type 0 - co. (ZEFE e

L;Lﬁl?‘ﬁj%ﬂgz:iﬁﬁg) VADFNTKTC1k
We can deal with it by writing the product fg as a quotient:

_ _9
f9_1/g or fg—l/f,

and this converts the given limit into an indeterminate form of type 8 or .
Example 4 (page 308). Evaluate lim zlnz.
z—07t

Solution.

O A s o B 5 F s R = —FI 22,

Indeterminate Differences, page 309

Definition 5 (page 305). If lim f(z) = oo and liin g(x) = oo, then the limit

r—a

lim (f(ﬂj‘) — g(:L')) waEYszlQ

Tr—ra

is called an indeterminate form of type co — oo (FEFRARBIEE RN ER).

We can try to convert the difference into a quotient (for instance, by using a common
denominator (343), or rationalization (B#1L), or factoring out a common factor (2AKR))

. . 0
so that we have an indeterminate form of type g or =¢.

Example 6. Find the limit lim (i S—
z—

2 T2 )
0 x s~ x

Solution.

(] FEREs 18 8 MK H, FEEHME A PHospital Rule,
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Indeterminate Powers, page 310

lim (f ()7

h2ifbDamOXw
r—a

(1) lim f(z) =0 and liin g(z) = 0: type 0°.

rT—a

(2) lim f(z) = oo and ligl g(x) = 0: type o®.

rT—ra

(3) lim f(z) =1 and liin g(x) = fo0: type 1°°.

T—a
Fach of these three cases can be treated either by taking the natural logarithm: let y =
(f(2))9@®), then Iny = g(z)1n f(x) or by writing the function as an exponential: (f(z))9®) =
9@ f(z) n either method we are led to the indeterminate product g(x)In f(x), which is of

type 0 - oco.

Example 8 (page 310). Find lim 7.

z—0+

Solution.

[ B s R ER, TR,
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(& A ’Hospital Rule B 5
o BANIBAREEHNEE: (1) BESFER; (2) KE lim 112 255,

r—a g’(l‘)

. T
lim ———
z—01 +sinx

. T —sinz

lim ———
=00 T + SIN X
e e, e B S| 11 1

o HERBITHE; 2 sinz, cosa (as @ — o0) BUE sin 7, co8 +, o s (85  — 0)o
201 o 1 2 1, 1 1 1

Coxfsins (9,0 . 2xsin= + x°cos = (—-3) . 2zsin= — cos =

im ——2 "= lim z T2 277 — lim z z 7
=0 sinx 70 cos T 70 cos T

. . r (5L . 1 .

lim zlnz = lim —/— °=  lim ———— = lim —z(lnz)*... BITH
z—07t z—0t — =0t ——5 - = z—07t

Inz (Inz)2 =z

o NTOREERSEE, EHOM, BURBEER, FHREE,

_1 1 1 _1
e = ( % )71;l . € = 5;5 . (§

AT

z—0t 2x z—0+ 2T

1 = 1

. = (2).L . s 2 ENmE 7
lim - = lim & "= lim ——*= = lim — ... [H0EEF, HH—X
z—0t 2673 z—0t o3 z—0% % ——) t—=0" pe.

. 1

lim :
r—0t x2e;

tanx — x
lim

z—0 r —sinx

. tan 3z
lim

=0t /1 — cos 2%
e 'Hospital Rule FEEE R “Ki@”, {HiiIEERE,

(sinz)e”
z—o0 (x + sin x)e?*

o0_0cpMZYcps

o FLBHMKMIRA /3, 2 Squeeze Theorem, definition of derivative, R . (2% E

GRS T ERIBIR, T2 s AR R ERER, )

. sinz . 1 . sinx . .
lim = lim zsin — = lim = lim zsin — =
x—0 X Tr—00 x rT—oo I z—0 x
1\* 1 In(1
lim <1+—> - lim (1 + )% = lim 2L 2)
T—00 x x—0 x—0 X
1\* 1 In(1
lim <1+—> - lim (1+2)7 = T G
z—0 xT T—00 T—00 T
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Appendix

Proof of I’'Hospital’s Rule (Appendix A46)
F@) _ I, Define

S We are assuming that }:E)Illl f(x) =0 and ;liré g(x) = 0. Let in_rr)}l ()
P O T S O
0 fz=1 0 fz=1

Then both F' and G are continuous on [ since fand g are continuous on {x € I|x # a} and
= G(a).

lim F(z) = lim f(z) = 0= F(a),  lim G(z) = lim g(z) =0
= f"and G’ = ¢'. Since

Furthermore, F' and G are differentiable on (a,z) (or (z,a)) since F’
G’ # 0, by the Cauchy’s Mean Value Theorem, there is a number y such that a <y < x (or

r <y<a)and
Fi(y) _ F(z)=Fla) _ F(a)
G'(y) G(x)-Gla) Glz)
Hence
lim @ = lim F(x) = li Fy) = lim ') =L
z—at (l’) T—at G(ZL') y—at G/(y) y—at g/(y) ’
F'y) _ o W) _ L.>

)
m L&) im F) = lim -
<and lim @) ml_m, G(z) yl_mf G'(y)  y—a g'(y)

Therefore,
lim ﬂ = L.
z—a g(x)

This proves I’'Hospital’s Rule for the case where ¢ is finite.
If @ is infinite, we let t = % Then t — 07 as x — oo, so we have
1
) i &

Di oy, 198 D 20

sy g’(gj)

f@) _ S B
t%) t=0* g'(;

lim ——

im =
v=oo g(z) =0+ g(4

|—
SN—
I
=
S
KQ
3
—~
SN—
|
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L’Hospital Rule £2#5&[K % RIRY & FF5E H
[ 8 R 7 S ok A B = v

Limit Laws (page 99). Suppose that lim p(x) and lim q(z) exist. Then
Tr—a Tr—a

lim p(x)
. p(ﬂj) z—a . .
1 = f 1 .
@) T maw A0

L’ Hospital’s Rule (page 302). Suppose f and g are differentiable and ¢'(x) # 0 on an open

interval I that contains a (except possibly at a). Suppose that

lim f(x) =0 and limg(z) =0

r—a r—a

or that

lim f(x) = f+oo and lim g(z) = £o0

rT—ra r—ra

(In other words, we have an indeterminate form of type g or 2.) Then

lim @ = lim (=)
a—a g(x)  z—a g'(x)

if the limit on the right side exists (or is 0o or —o0).
38 W i B ] DUE RO R BIEE ), HLT7ER:

Theorem 9. Suppose that p(x), q(x) satisfy the assumptions of Limit Laws with lim p(x) # 0,

rT—ra

and suppose f(x),g(x) satisfy the assumptions of L’Hospital Rule. Then

PO b))

v g(@)g(w)  avaglz) e (@)’
EREMERFNRR: BADT p2)f(x) BEETERE 0, 5 q(2)g(c) BEBIERER
0, S HOME B & WAER, BREESTESBEENE-HARTED (WE L R Y), T
p.q BESEERBR, IERTLIE p, ¢ KOEIREE, %8R THTER 2R, Fifk.
AEEHE, RS lin L = lim 58 = L, FOTFRAOB—ESA 0% (FEE)

o 9' (@)

K

[~

s}

o P@I@) ) @) p@) )

20 g()g(w)  eoeg(z) =oag(z)  esegz) zoag(z)

EH—SRREAKXCESEN @, FRERSA—FE § BAMERNM LT (HE
H B REZEFRE"), #REETUENER, HERBRET &R L REFHE LRRE,
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4.3 How Derivatives Affect the Shape of a Graph,
page 293

-

E#EE Increasing/Decreasing Test (page 293).
[=]

1-050Dx0n0 (a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) <0 on an interval, then f is decreasing on that interval.

Proof.
(a) Let x; < 9. By the , there is ¢ € (x1, z2) such that
(b) Let x1 < x9. By the , there is ¢ € (x1,z2) such that

O

Example 1. Find where the function f(x) = 32* — 423 — 1222 + 5 is increasing and where it

is decreasing.

Solution. We compute f'(z) =
Solutions of f/(z) = 0 are . Hence

f(x) is increasing on ; f(x) is decreasing on

=%E The First Derivative Test (page 294). Suppose that c is a critical number of a continuous
e

ehahVquKqMk

function f.

(a) If f' changes from positive to negative at c, then f has a local mazimum at c.
(b) If f' changes from negative to positive at ¢, then f has a local minimum at c.

(¢) If f’ does not change sign at ¢ (for example, if ' is positive on both side of ¢ or negative

on both sides), then f has no local maximum or minimum at c.

Figure 1: The First Derivative Test.
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Example 2. Find the local minimum and maximum values of the function f(z) = 3z% —
423 — 1222 4+ 5 in Example 1.

Solution.
x -1 0 2
f 0 5 —27
f/

Hence f has local maximum ; f has local minimum

Definition 3 (page 296). If the graph f lies above all of it tangents on an interval I, then EZ#jE
it is called concave upward (MIHEI L) on I. If the graph f lies below all of it tangents on an %

interval I, then it is called concave downward (MEHEIT) on I. 9-0b-5pEF VM
U] B HRI SO AR (convex) BARMOA E (concave upward)o

Y Y

Figure 2: Concave upward and concave downward.

Concavity Test (page 296).

(a) If f"(x) > 0 for all x in I, then the graph of f is concave upward on I.

(b) If f"(x) < 0 for all x in I, then the graph of f is concave downward on I.
Proof of (a). Since f”(x) > 0 in I, we know that f/(z) is increasing in I. Given xg € I, the
tangent line equation to the graph of f(x) at (xq, f(xg)) is

y — f(x0) = f'(z0)(x — z0) = y = f'(x0)(z — w0) + f(0).
We will show that f(z) > f'(zo)(x — x0) + f(xg) for all z € I.
Consider the function

F(z) = f(z) — f'(w0)(z — x0) — f(xo) for =z €l

First, we know that F(xg) = 0. Next, we compute F'(z) = f'(z) — f'(xg), which implies
F'(z9) = f'(x0) — f'(x0) = 0. Since F'(x) < 0 for < zg and F'(x) > 0 for > z(, we know
that F'(xo) is a local (and hence absolute) minimum at z = xg in /. That means F'(z) > 0
for all z € I, thus f(z) > f'(zo)(x — x¢) + f(xo) for all z € I. O




EEEE
F.-u

=

505tEz70tPc
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Definition 4 (page 297). A point P on a curve y = f(z) is called an inflection point (X
#5) if f is continuous there and the curve changes from concave upward to concave downward

or from concave downward to concave upward at P.

Y Y

Figure 3: Inflection points.

Example 5. Find the concave upward and downward intervals, and inflection points of the
function f(x) = 32* — 423 — 1222 + 5 in Example 1. Sketch the graph of f.

Solution. We compute

f'(x) =
So
T -1 1 0 T9 2
f 0 f(z1) 5 f(z2) 27
| - 0 + 0 - 0 +
f//

The points of inflections are

f is concave upward on

f is concave downward on

Figure 4: The graph of f(x) = 3z% — 423 — 1222 + 5.
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The Second Derivative Test (page 297). Suppose f” is continuous near c.
() If f'(¢c) =0 and f"(c) > 0, then f has a local minimum at c.
(b) If f'(¢) =0 and f"(c) <0, then f has a local mazimum at c.
Example 6. Show that f(z) = S22 is decreasing on (0, ).

Solution.

(] H#g Section 2.3, FRRFHEEIAT |sinx| < |z
Example 7. Classify all cubic functions f(z) = az® + bx? + cx + d.

Solution.

EU_LBaZWedk

jFFuiBKJP4M
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4.5 Summary of Curve Sketching, page 315
Definition 1 (page 320). If

lim (f(x) — (mz+b)) =0,

T—00

where m # 0, then the line y = mx + b is called a slant asymptote (FHERLAR).

Proposition 2. The graph of f(x) has a slant asymptote if and only if

lim @:myﬁo and lim (f(x) —mx) =b.

r—oo0 I T—00

Proof. When x > 0,

f) _J@)=metb) 0 b F@ oz m,
x x r  zoo0 T
Tim (f(2) — ma) = lim (f(@) — (ma +b) +b)
:mli_{go(f(x) — (mz + b)) +x1Ln;Ob: 0+b=h.
Conversely, we have
Tim (f(2) ~ (ma + 1) = lim ((f(«) —maz) - b)
= xh_}n(}o(f(w) — mx) —xILn;Ob: b—b=0.

[ MEERE v — —oo WATREERNLM, &2 ELS BRI im
L FfEREIR A B SRR BE BRI AR, VA0 f(z) = Ina EHERREGL.

Guidelines for sketching a curve

£  Domain: the set of z for which f(z) is defined.

% Intercepts: y-intercept f(0), z-intercepts: let y = 0 and solve for .
#  Symmetry: even function, odd function, periodic function.

#  Asymptotes: horizontal asymptotes, vertical asymptotes, slant asymptotes.
—  Intervals of increase or decrease: use the Increasing/Decreasing test.

&  Local maximum and minimum values: find the critical numbers of f (f’(c) = 0 or
f'(c) does not exist.)

—  Concavity and points of inflection: compute f”(x) and use the Concavity Test.

Sketch the Curve: use the information in items 1-7, draw the graph.
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Example 1 (page 317). Sketch the curve y = f(z) = 2%

z2—1"

Solution. eI0fbbIgRy0

A. The domain is

B. The z- and y-intercept are both _.
C. Since , the function fis
D. Since

222

lim = ,
r—doo 2 — 1

the line is a . The denominator is 0 when . we

compute the following limits:

| 272 | 22
im = im =
z—1+ 22 — 1 z—1- 22 — 1
272 272
lim = lim =
-1+ 22 —1 r——1- 22 —1
Therefore the lines and are vertical asymptotes.
E. Direct computation gives
/
y =
Since f’(z) > 0 when and f/(z) < 0 when , fis
increasing on and decreasing on
F. The only critical number is . Since f’ changes from positive to negative at 0,
f(0)=0isa by the First Derivative Test.
G. Direct computation gives
f(@) =
We know f”(z) > 0 on and f”(z) < 0 on . Thus the curve is concave
upward on the interval and concave downward on . It has

no point of inflection since

H. Using this information to sketch the curve. (BfEA L)
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Vz+l®
awmjt'mg Solution.
A. The domain is
B. The z- and y-intercept are both ___ .
C. Symmetry: None.
D. Since
2
im = ,
z—o0 \/x + 1
there is no horizontal asymptote. Since
I i
im =
z——1+ /o + 1 ’
the line is a vertical asymptotes.
E. Direct computation gives
y =
We see that f/(x) = 0 when , so the only critical number is _. Since f'(x) > 0
when and f’(z) < 0 when , f is increasing on and decreasing

on

F. Since f/(0) =0 and f’ changes from negative to positive at 0, f(0) =0 is a
by the First Derivative Test.

G. Direct computation gives

f(x) =
Since the numerator is always , we know f”(z) > 0 for all x in the domain of
f, which means f is concave upward on and there is no point of inflection.

H. Using this information to sketch the curve. (BfEHA_ L)
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Example 3 (page 318). Sketch the curve y = f(z) = xe”.

Solution.
A. The domain is .
B. The z- and y-intercept are both ___ .
C. Symmetry: None.
D. Since
lim ze® = ,
T—r00 -
there is no horizontal asymptote. By the I’Hospital Rule, we have
lim ze® = lim —— = ,
Z——00 z——00 e~ %
so the __ is a horizontal asymptote.
E. Direct computation gives
y/ =
Since f'(x) >0 when  and f(z) <0when | f is increasing on
and decreasing on
F. Since f/(—1) =0 and f’ changes from negative to positive at z = —1, f(—1) = —e
a by the First Derivative Test.
G. Direct computation gives
f(x) =
Since f’(z) >01if  and f’(z) <0if | f is concave upward on
and concave downward on . The inflection point is
H. Using this information to sketch the curve.

xT

is

EE%E
iyt
[=]

1Qp4US5GRCA
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T 24sinz”

E%E Example 4 (page 319). Sketch the curve y = f(z) = 5552
A

whkisiSCwIU SOlut 1on.

A. The domain is .

B. The z-intercepts are and y-intercept is

C. Symmetry: f is neither even nor odd. Since f(x + 2m) = f(z) for all z, f is
and has period __. Thus, the following steps we only consider 0 < x < 27 and then

extend the curve by translation.
D. Asymptotes: None.
E. Direct computation gives

/

y =
Thus f'(z) > 0 when . So f is increasing
on and decreasing on
F. From part E and First Derivative Test, the local minimum value is and

local maximum value is

G. Direct computation gives

f'(@) =

Since f"(z) > 0 if , [ is concave upward on and concave downward

on . The inflection point is

H. Using this information to sketch the curve.
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Example 5 (page 319). Sketch the curve y = f(z) = In(4 — 22).

Solution. NwfD£0YvDcc
A. The domain is
B. The y-intercept is f(0) = In4. To find the z-intercept, we set In(4 — z%) = 0, so we
have . Therefore the z-intercepts are
C. Since f(—z) = f(x), f is and the curve is symmetric about the
D. Since
lim In(4 — 2?) = , lim In(4 — 2?) = ,
r——2+ T2~
the lines are vertical asymptotes.
E. Direct computation gives
y =
Since f/(x) > 0 when and f’(z) < 0 when , [ is increasing on
and decreasing on
F. The only critical number is . Since f’ changes from positive to negative at 0,
f(0)=In4disa by the First Derivative Test.
G. Direct computation gives
f(@) =
Since f”(x) < 0 for all z, the curve is on and has no inflection
point.
H. Using this information to sketch the curve.
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x3
241"

A. The domain is .

B. The z- and y-intercept are both ___ .

C. Since , the function f is

D. Since 22 + 1 is never 0, there is no vertical asymptote. Since f(x) — oo as z — oo and

f(z) = —o0 as x — —o0, there is no horizontal asymptote. Long division gives

o=y =

f(a:)—a::—x2+1:

So the line is a

E. Direct computation gives

/

y:

Since f’(x) > 0 when , f is increasing on

F. Although f’(0) = 0, f’ does not change sign at 0, so there is or

G. Direct computation gives

f(@) =

Since f”(x) = 0 when , we set up the following chart.

The points of inflection are

H. Using this information to sketch the curve.
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4.7 Optimization Problems, page 330

Steps in solving optimization problems

1. Understand the problem: What is the unknown? What are the given quantities?

What are the given conditions?

2. Draw a diagram: In most problems it is useful to draw a diagram and identify the

given and required quantities on the diagram.

3. Introduce notation: Assign a symbol to the quantity that is to be maximized or
minimized (call it @ for now). Also select symbols a,b,c,...,z,y for other known

quantities and label the diagram with these symbols.
4. Express @ in terms of some of the other symbols.

5. If @ has been expressed as a function of more than one variable, use the given informa-
tion to find relationships among these variables. Then use these equations to eliminate
all but one of the variables. Thus we get Q = f(z).

6. Use the methods of Section 4.1 and 4.3 to find the absolute maximum or minimum

value of f.

Example 1 (Snell’s Law, 1 /58E &, page 268). Let vy be the velocity of light in air and v

the velocity of light in water. According to Fermat’s Principle, a ray of light will travel from

a point A in the air to a point B in the water by a path AC'B that minimizes the time taken. xzegravy
Show that

sinf; v

sinfly vy’
where 60 (the angle of incidence) and 0y (the angle of refraction) are known.

Solution.
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I%&}. E Example 2 (H51E, page 268). A steel pipe is being carried down a hallway am wide. At
%’f ; : the end of the hall there is a right-angled turn into a narrower hallway b m wide. What is the

ewpor26cae  Jenoth of the longest pipe that can be carried horizontally around the corner?

Solution.

Example 3 (BE. ZERJEK, page 269). A painting in an art gallery has height h and is
hung so that its lower edge is a distance d above the eye of an observer. How far from the wall

emaxienvzl - ghould the observer stand to get the best view? (In other words, where should the observer

stand so as to maximize the angle 6 subtended at his eye by the painting?)

Solution.
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Example 4. A right circular cone is inscribed in a sphere of radius r. Find the largest E&%E
possible volume of such a cone. In this case, what is the height and radius of the cone? i

thrEiTBiqA
Solution.

Example 5 (fT#HE, page 269). The upper right-hand corner of a piece of paper, 30 cm by  EfiE
20 cm, is folded over to the bottom edge. How would you fold it so as to minimize the length %ﬂﬁ

of the fold? In other words, how would you choose z to minimize y? F2T0C_OCRCO

Solution.
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Example 6.

= -ﬂa&i

N-KwPosBmfE

(a) Find the point (denote P) on the line y = x2 that is closest to the point Q(3,0).
(b) Show that the line PQ is orthogonal to the tangent line of y = 22 at P.

Solution.

EgE  Example 7 (BRRBEME).

CzCCC_TmTJg
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4.9 Antiderivative, page 350

Definition 1 (page 350). A function F is called an antiderivative (REKE) of f on an %—‘%
E

interval I if F'(x) =

f(z) for all z in I.

3ES4KjEu5gU

Theorem 2 (page 351). If F' is an antiderivative of f on an interval I, then the most general

antiderivative of f on I is

F(z)+C,

where C' is an arbitrary constant.

Proof. If F and G are any two antiderivative of f, then F'(z) = f(x) = G'(x).

Form the

corollary of the Mean Value Theorem (Section 4.2 Corollary 8), we know G(z) — F(z) = C,
where C is a constant. So G(z) = F(z) + C.

O

This is a table of antidifferentiation formulas. We use the notation F'(z) = f(x) and E#&E

G'(z) = g(). i
gvp9CLFo8AC
Function  Particular antiderivative || Function Particular antiderivative
cf (x) cF(x) sec? tan z
f(x) +g(x) F(z)+ G(z) sec x tan secx
z"(n # —1) f;:ll 11_:02 sin~!a
1 In |z| H% tan~!
e” e” cosh x sinh x
cos sin z sinh x coshz
sinx —CoST

Example 3. Find the most general antiderivative of the function.

tive of the function f(x).)

(Let F(x) is the antideriva-
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Example 4. Find f(z).

ab2]0tedkon (1) f'(x) =2cosx + sec? z, —s<z<%, f(5)=4

(2) f"(x) =2e"+3sinz, f(0) =0, f(r) = 0.

Solution.

[ U EARRBE BRGNS HER] (ordinary differential equation)s




