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Chapter 3 Differentiation Rules

3.1 Derivatives of Polynomials and Exponential
Functions, page 172

Property 1 (Derivative of a constant function, page 172).

d

—(c) =0. GlySz9CJ1SE
) ,
Proof. Let f(x) = c the constant function, then from the definition of a derivative, we have

o) = tim @ @) e—e

h—0 h h—0 h h—0

Property 2 (The power rule, page 173). If n is any real number, then
d

() — n—l'
e (z") = nzx
Proof. Let f(x) = z™. Here we check the case n € Z and show the general case in Section

3.6. First, for n € N, by the Binomial Theorem, we compute

fath) = f@) @b

/ T .
i) = Jim h B0 n = n
= fllm% Cre=Rpk=l — g <}Lir% C,?x("_k)hk_l> = O™ = pa"h
— —

n

Next, we check the case negative integer —n,n € N. That is, let f(z) = 27", and we will

prove f'(x) = —nz~"" L
. +h) — f(z) 1 1 1
fa) = fim h hooh \ (z + Ry 2
! n.(n—k)pk _ .n
= lim — =lim-» +—8——
h—0 h(x + h)"z™ h=0 £~ (x + h)nan
Cn (n— k)hk 1 I _
B Z <h—>0 (x + h)man = —Ciw -

|:| n 7 73‘# \—t a® _bn_( —b)( n—l+an—2b+___+abn—2+bn—1)o

O EAAR: a—b=(an —be)(a" +a= bn+-+arbs +b"% )
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'ar Property 3 (The constant multiple rule, page 175). If ¢ is a constant and f is a differential

R function, then

mVPODEZRNBw d d

, gl+h)—g(z) . cflx+h)—cflz) f@+h) - f(z)
g(@) = lim h = h - ;llbmoc< h >
o flaeth) = f=)
=i LRI <o

Property 4 (The sum and difference rule, page 176). If f and g are both differentiable, then

(@) % 9(0) = 7 () + +gla)

Proof. Let F(z) = f(x) £ g(x). Then

o Flath) - Fz) (f(z+h) +g(z+h)) = (f(z) + g())

Fi(z) = Jimy h = h
o (flet+h) = f(z)  gl@+h)—g(z)
W?ﬁ%( h = h >
o St h) = fle) o ogl@th)—g@) /
= fm h + i, h = o) £g(@).

Example 5. Compute the derivative of the exponential function f(x) = a*.

Solution.
JIC1£3hWjsI
reoN flx+h) = f(z) oth _ v a*al — a®
(@)= Jim, B R S L
. a®(a" —1) . a'—1 ,
hlg%) <h1i% h > f(0)f(x)

h—0 h
[J e~ 2.71828... (48 Section 1.4 B/, %l Section 3.6 #&HI lim (1+ )" =e).
n—oo
Property 7 (Derivative of the natural exponential function, page 178).

%(ex) =e”.

Proof. Let f(x) =", then

e B (- )
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3.2 The Product and Quotient Rules, page 183

Property 1 (The product rule, page 184). If f and g are both differentiable, then Lkt 0]
L (f@)g@) = g(a) > f(a) + fo)~mg(0) Hfﬁ%
dz 9 =9 dz dgjg . _35ppp:

Proof. Let F(x) = f(z)g(z), then

o @+ gz +h) — f(2)g(z)

Fl(z)=1 =1
h—0 h h—0 h
o J gl 1)~ F(@)ge+ ) + f@glz +h) — F()g(x)
h—0 h
- lim (f(ﬂc + h}z - f(:c)> oz +h) + f(x) (g(w + h}z - 9(56))
~ lim <f(x + h}z - f(w)> lim g+ h) + (z) lim <9(x + h})l - 9(%))
= f'(z)g(z) + f(2)g'(x)
]
U EEREEA (f(2)g(2)) # f(2)d ().
L #8: (f(2)9(x)h(2)) = f'(x)g(@)h(x) + f()g' (@)h(x) + f()g(@)h'(x).
O 3R 7R (Leibniz Rule): (£9)™(2) = 32 CPLO9) (2)g® ().
k=0
Property 2 (The quotient rule, page 186). If f and g are both differentiable, then
d <f(w)> _9@) g (@) — f@)gro(@)
dz \ g(z) (9(2))?
Proof. Let F(z) = g(—g. Then
o) — i FEEN = F@) G G0 S hel) — gle £ W) ()
50 h " h—0 h © h—0 hg(xz + h)g(x)
_ o et h)g(x) — f(x)g(x) + f(x)g(x) — g(z + ) f(x)
h—0 hg(z + h)g(x
o () = F@)g(a) — F@) g+ ) — g(a)
h—0 hg(x + h)g(x)
. f(r+h})L—f(r)g($) ¥ $)g(r+h})L—9(w)
h—0 g(xz + h)g(x)
f(z+h)—f(x) o 9@th)—g(@)
i TR () — S (@) iy £ 9(@)f (@) ~ F(a)g ()
lim g(z + h)g(x) (9(x))?
]

U S FHOMERE, —E—&, NAREMEBEMERE?
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%g Example 3. Compute % (%)
B

Solution. We compute

e (i) & (i) - (57

_glaf' = f9) — (af = f9)(g 9)

Hf joNHEogqA

94
_ PG +af" — f'9 — f9") — (9f' — f9')(29'9)
94
_g9(gf" = f9") —24'(gf" — f9)
- . .

O s L9 s n &, HB—EALULER (9(2)" e
9(x)

Example 4. The curve y = H% is called a witch of Maria Agnesi (BE%E##). Find an equation
of the tangent line to this curve at the point (—1, %)

Solution. Since

(=2)-(=1) _1

b (I+ 22)(1) — 1(1 + 22’ I , B
y(z) = (1+ 22)? Tk y(—l)_m_a

we know the tangent line equation is y — § = £(z + 1).
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3.3 Derivatives of Trigonometric Functions, page
190

Goal: Find the derivative of six trigonometric functions.

Example 1 (page 192-193). Calculate the derivative of f(#) = sinf and g(f) = cos#.

Solution. We compute uyEODRROYGg

: : RY win b
£(6) = lim f(0+h)—f(0) ~ lim sin(f + h) —sin @ ~ lim 2 cos (9 + 5) sin 3
h—0 h h—0 h h—0 h
. h\ .. sin%
= limcos |0+ = | lim = = cos 0
h—0 2 ) h—0 5
— o 95 0 Y win b
g/(e) — lim g(0 +h) —g(0) — lim cos(f + h) — cos @ _ lim Sln( + 2) sin 5
h—0 h h—0 h h—0 h
in
= lim —sin 9—|—Q lim ) = —sginé.
h—0 2 ) hs0 bk

2

Example 2 (page 193). Calculate the derivative of tan 6, cot 0, secd, and csc6.

Solution. Using the quotient rule, we get

itan@ _d <Sin9> _ cosf(sinf) —sinf(cosh)  cosfcosf — sinf(—sinb)

dé dé \ cos b cos? 0 cos? 6
_ — an?
= o 2g =~ s 0
d d 1 (tan 0)(1)" — 1(tan #)’ sec? 9
a9 de <tan 9) tan? ¢ tan? 0 o
d d 1 (cos@)(1) — 1(cos @)  siné
a9 > de <cos 9) cos? 6 cos2 @ oovr
d d 1 (sinf)(1) — 1(sin @)’ cos 6
ag > b dé <sin 9> sin? sin? 0 cscfcot
[] tan@cot§ = 1 = sec? cot  + tan f(cot §)’ = 0 = (cot §) = — L = —csc? 6.
L] st A E= AR s S m .
Example 3. Calculate the derivative of sin? 6 and cos? 6. D)
LA
Solution. We compute ndaXcgb2EUw
(sin? §)" = (sinfsin )’ = cos O sinf + sin f cos § = 2sin 6 cos 6.
(cos?6) = (cosfcosf) = —sinfcos — cosfsinf = —2sin f cos f.

(] sin?6 + cos?0 = 1 = (sin? 0 + cos? 0)’ = 0.
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Example 4. Compute iT"n sin @ and dc% cosf.

Solution. Direct computation gives

f(0) =sin = fH(0) = f*(9) 9(0) = cost = g (6) = "M (6)
£'(0) = cos§ = fO)(0) = fU+D(g) g'(8) = —sind = g®(g) = g+ (p)
£(0) = —sind = fO @) = fH* D) ¢"(0) = —cos = g© () = g*F+D(9)

F"(0) = —cos0 = fD(0) = fH*D () ¢"(0) =sinf = g7 (0) = g (0).

Remark that we have another type of formula:

n

isin@zsin (9—1—%) = d—sin@zsin <9+n2_7r)

dé don
d 0 d" nm
@COSQ—COS (9—1—5) = WCOSQ—COS (94—7) .
LR K83 FIlE 26 #GT
e (¢))=0. Derivative of a constant function
o (") =nz"! The powe rule
o (cf(x)) =cf'(x). The constant multiple rule
o (f(x)+gx)) =f'(z)+d(x). The sum rule
o (f(x)—gx)) = f'(z) - d(x). The difference rule
o (f(z)g(x)) = f'(z)g(x) + f(z)g(x) The produce rule
. (g(—g) — g@f /(Z)(;)J;(f)g @), The quotient rule
* (flg(x)) = f'(g(x)) - ¢'(2). The chain rule
EAKNERERE, BLAC
(sinf) = cos @ (tan ) = sec® 6 (sech) = secftanb
(cos ) = —sinf (cot §) = —csc? § (csch) = —cschcot
e HIEZRME " HEKEH
h _
lim < 1:1, i(“"’):x
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3.4 The Chain Rule, page 197

Theorem 1 (The Chain Rule ($#£581%), page 198). If g is differentiable at x and f is differen-
tiable at g(x), then the composite function F = fog defined by F(x) = f(g(z)) is differentiable

at x and F' is given by the product T4ng45Zc_10

In Leibniz notation, if y = f(u) and uw = g(x) are both differentiable functions, then

%_dy du

dz ~ du dz’
Theorem 2 (The power rule combined with the chain rule, page 200). If n is any real number
and g(x) is differentiable, then
()" = nlo(@)" " g (@)
dx i

Proof. The relation is x Iyu= g(x) i> y = u". By the Chain Rule, we have

dy _dy|  du

C— = n—1 .d — n—1_ 1
dz — dul,_,,) dz nu |u:g(:c) g9 (z) =n(g(x)) q'(x).

O] & B s sk A,
[ #%& BB S RIE
O ¥ mEREE—E—E—EEHEEeL ...

Example 3. Find the derivatives.

(a) (sin(az)) =

Example 4 (page 202). Show that %ax = a*Ina.

Solution. JZcVK7bCXwo
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Example 5. Let f(z) = ﬁ Find f'(1).

Solution.

L] sheBBREkskfl fE887E. fRE
Example 6. Let y = % +a*" +a”. Find %.

Solution.

[ 8 E = R B B B B S B M SRR IE ;R RSB A % XS B

CIE

= 0,¢'(0) = 1. Find the

110KxjGqQSA .
lim f(sinx)g(cos x) .

ﬂ 2_ T
Ty X 233

Solution.

[ S o B S B S B T e
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Example 8. Let

(a) Find f/(0).

(b) When = # 0, find f'(x).

(¢) Does f"(0) exist? If it exists, please find its value. If not, give reason to support your

argument.

Solution.

Ll (a) BRI EREENHE, £ %ﬁﬂﬂi [EE] R,

[ (b) SRy I FIE S SR SHaR A R T TERA B [T | F A,

U (c) RS, BE5 B E B 5& TRl [EZ] Hi#.

U i Section 2.7 #) Example 6.

To prove the chain rule, one idea is the following:

Fi(e) = hig%) h
_ oo S+ h) — flg(@) gl +h) —g(x)
h—0  g(x+h)—g(x) h
i FE ) — flg(2)) 9@+ h) —g(2)
h—0  g(x+h)—g(x) h—0 h
= f'(9(x)) - g'(x)

This argument looks great, but it is not correct. What is the problem? How do we overcome

the problem?

03m_ixBfAmo
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Appendix

e -

bN5v23EJyrs

Proof of the Chain Rule. The function g(z) is differentiable at x. This means ¢'(x) exists and

g(x—l—h})l—g(x) —d(x)—=0 as h—0.

Define a new variable v by

, - 9@th) —g(@)
h

—g'(x) = g(z + h) = g(z) + (¢'(z) + v)h. (1)

Notice that v depends on the number h and that v — 0 as h — 0. Similarly, because the
function f is differentiable at the point y = g(z), we have

k — 0.
Define another variable w by
+k)—
PUABIZTW i) = sty +8) = ) + (/@) + w)k )
Notice that w depends on the number k£ and that w — 0 as k£ — 0.
From (1), we get

flg(z +h)) = f(g(x) + (¢'(x) +v)h).
Use (2) applied to the right-hand-side with k = (¢/(z) + v)h and y = g(x) to get.

flg(@) + (¢’ () + v)h) = f(g(x)) + (f'(9(x)) + w)(g'(x) + v)h.

Note that kK — 0 as h — 0, and so w — 0 as h — 0. So

flg(z+h)) - flg(x))
h

_ flg@) + (f'(g(x)) + w)(g'(x) + v)h — f(g(x))
h
) + 00 @)+ O _ () )+ ).
Hence

i £o@ 4 1) — Fg(@)

h—0 h

_ li / li li / li
<h1gbf (9(z)) + hlgatb) <h1g59 (@) + im )

sincev —0ash—0and w—0as h— 0.
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3.5 Implicit Differentiation, page 208

The functions that we have met so far can be described by expressing one variable explicitly £

in terms of another variable y = f(z). However, there are a lot of functions are defined

implicitly by a relation = and y and we formally write it as F(z,y) = 0. For example, UnagTtirre
F(z,y) =22 +y>—4=0, F(z,y) = 2 +y> — 62y = 0.
Y Y

NN
N,

Figure 1: (a) A circle 22 + y* = 4. (b) The folium of Descartes z* + y* — 6zy = 0.

Most of time, implicit functions are not “functions” (see the definition of a function in

Section 1.1), but they are locally be expressed as functions.

Y Y

Figure 3: The folium of Descartes 2® + v — 6zy = 0.

Furthermore, it’s not easy to solve implicit functions F'(x,y) = 0 to explicit ones y = f(x).
Fortunately, we can compute the derivative of implicit functions without solving implicit

functions to explicit ones by




L1UA-nYD_A4
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2., ,2_ .2 d
Example 1. If 2° 4 3° = r*, find 3.

Solution.

Solution 2.

L] EEE F(x,y) =0 B8 F(z,y(z)) = 0o

Example 2.
(a) Find v/ if 23 + ¢® = 6xy.
(b) Find the tangent to the folium of Descartes 2° + y® = 6zy at the point (3, 3).
(¢) At what point in the first quadrant is the tangent line horizontal?

Solution.

If we solve the equation 23 +y3 = 6zy for y in terms of =, we get three functions determined

by the equation:

s/ 1 1 s/ 1 1
y=flz)= \/—59534-\/11'6—81'34-\/—5353—\/1%6—81'3
1 s 1 1 s/ 1 1
y=3 —f(x)£v-3 \/—53:34—\/1:136—8:1:3—\/—53:3—\/1‘%6—8%"’ .

It is very complicated to get the derivative by these formulae.

and

Implicit differentiation works for a lot of equations such as 3° + 322y + 524 = 12 for which

it is 9mpossible to find an expression for y in terms of x.
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An application of implicit differentiation is derivatives of inverse functions. 5
[=]
Derivatives of Inverse Trigonometric Functions (page 214). £u7Q0Q5ANEH
sin~lz = ! d cosla = ! d tan "1z = !
dz V1= 22 dz 1= 22 dz 1+ a2
_1 1 d _1 1 d _1 1
—cot Tz =— —sec r=——rr— —csC = —————.
dx 1+ 22 dz vz —1 dx Va2 —1

Proof. Let y = y(x) = sin~! z, then siny = x = cosy % =1. So

y 11 1
dz cosy /1 —sin?y V1—22

(] sin~!z,cos ™'z, tan~" 2 FPEKHEHG; AEK = AR ERSHEEHEE,

Example 3 (Derivatives of inverse functions). Suppose f is a one-to-one differentiable func-
tion and its inverse function f~! is also differentiable. Show that

provide that the denominator is not 0.

Solution.

w N

Example 4. Find the tangent line of Ts + ys = as at (z0,y0) and the length between

z-intercept and y-intercept.

LgLBwdDoWil
Solution.
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Example 5. Suppose that f(z) € C*(R) and f(x) satisfies 22 + zf(z) + (f(z))? = k, where
k is a constant, and f'(a) = f”(a) = 1. Find a and k.

Solution.

Example 6. Two curves are orthogonal (IER) if their tangent lines are perpendicular at each
point of intersection. Show that the given families of curves are orthogonal trajectories (1E
RE#R) of each other; that is, every curve in one family is orthogonal to every curve in the
other family.

(a) 22 +y?> =12 azr + by = 0.
(b) 22+ 9% =ax, 22 +y? = by.
Solution.

(a)

(b) First, 22 +y? =ax = 22 +2yy = a = 3y = % if y # 0. Next, 22 + 9% = by =

2e+2yy =by' = (b—2y)y =2x =y = bzﬂgy if y # g. Soify # 0 and y # %,We have

a—2zx 2z _2a3:—4:n2_2:n2—|—2y2—43:2_2y2—23:2_ 1
2y b—2y 2by—4y? 222+ 22 —4y? 22— 22

mi1-mo =

If y=0, then 22 —ar = x(r —a) =0 =7 = 0 or z = a, so z° + y* = ax has vertical
tangent line at x = 0 or x = a. If (z,y) = (0,0), my = 0. If (x,y) = (a,0),a # 0,

no curves in the family x? + y? = by passes through (a,0). If y = g, then z = +2

so 22 + y? = by has vertical tangent line at (g,:l:%). At (g,:l:%), we get a = b, and

my=a—2x=>5b— 2% =0, so 22 + y? = ax has horizontal tangent line at (g, :l:%).
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3.6 Derivatives of Logarithmic Function, page 218

Another application of implicit differentiation is getting the derivatives of logarithmic func-

tions.

Example 1 (page 218). Compute < (log, ) and £ (Inz).

Solution. Let y = log, z. Then a¥ = x. Differentiating this equation implicit with respect Zempvzg

to z, we get

In particular, we put a = e then %(ln x) =

Example 2 (page 220). Find f'(z) if f(z) = In|z|.

Solution. Since

| if 1 if
flx) = ne 1 r>0 it follows that f'(x) =<¢ = 1 r>0
In(—z) ifz <0, if x < 0.
Thus f/(x) = for all « # 0.
Y
x
Figure 1: f(x) = In|z|.
O f(z) = In|o| WEREE o

Application: Logarithmic Differentiation (¥f&i{d53%)

The calculation of derivatives of complicated functions involving products, quotients, or pow-
ers can be simplified by the method of logarithmic differentiation.

x% Va4l

Example 3 (page 220). Differentiate y = G

Solution. nTtUgqgbulOw
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The Power Rule (page 221). Ifn € R and f(z) = 2", then f'(z) = na" L.

Proof. Let y = x™ and use logarithmic differentiation for x # 0:

If x = 0, by the definition of derivative, we have

f1(0) =

Example 4. Differentiate y = x*. (The function is defined on z > 0)

Solution.

Solution 2.

L] EE 27, a®, 2 BEOME, KERIERE.,
The Number e as a Limit

n—o0

Example 5 (page 189). Show that e = lin%(l +z)r = lim (144"
T—r

Solution. We have shown that if f(z) = Inz, then f'(z) = 1. Thus f/(1) = 1. From the

definition of a derivative as a limit and the continuity of the logarithmic function, we have

fO+2)—f(1)

/ .
1 = l =

Hence we have lin%(l + w)*; =e. If we put n = %, then n — oo as * — 07, then we get an
—

alternative expression for e:

1 n
lim <1 + —) —e.
n—00 n

Example 6 (page 189). Show that lim (1+ £)" = e® for any z > 0.

n— o0

Solution.
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3.8 Exponential Growth and Decay, page 237

In this section, we will show some examples of quantities grow or decay at a rate proportional

to their size:
(1) The number of individuals in a population of animals or bacteria.

(2) In nuclear physics, the mass of a radioactive substance decays at a rate proportional to

the mass.

(3) In chemistry, the rate of unimolecular first-order reaction is proportional to the concen-

tration of the substance.

(4) In finance, the value of a savings account with continuously compounded interest in-

creases at a rate proportional to that value.

Definition 1 (page 237). If y(t) is the value of a quantity y at time ¢ and if the rate of change

of y with respect to ¢ is proportional to its size y(t) at any time, then

where k is a constant. It is called the law of natural growth (if k > 0) or the law of natural
decay (if k < 0). The equation (3) is called a differential equation (f§537i%2) because it

involves an unknown function y and its derivative %.

Theorem 2 (page 237). The only solutions of the differential equation % = ky are the

exponential functions
y(t) = y(0)e™.

Proof. Here we check any exponential function of the form y(t) = Ce**, where C is a constant,

satisfies

Y (t) = C(kekt) = k(CeM) = ky(t).
We will prove in section 9.4 that any function that satisfies % = ky must be of the form
y = CeM,

To see the significance of the constant C', we observe that
y(0) = CeF0 = C.

Therefore C is the initial value of the function. O

O At B R e & = ky.
[ HA R SRS AR A RE AT AR e BE.

(][]
: ¥

=

xB1bb_bh_Qo
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Population Growth, page 237

In the context of population growth, where P(t) is the size of a population at time ¢, we can

write

anISth dP
dat

1dP

kTP or EE =

The quantity %% is the growth rate divided by the population size; it is called the relative

growth rate (TH¥HERZR).
Instead of saying “the growth rate is proportional to population size” we could say “the

relative growth rate is constant.”

Example 3. The table gives the population of India, in millions, for the second half of the
20th century.

Year 1951 1961 1971 1981 1991 2001
Population 361 439 548 683 846 1029

(a) Use the exponential model and the census figure for 1951 and 1961 to predict the

population in 2001. Compare with the actual population.

(b) Use the exponential model and the census figure for 1961 and 1981 to predict the
population in 2001. Compare with the actual population. Then use this model to
predict the population in the year 2010 and 2020.

Solution.

(a)

(b) P(t) = P(0)ek! = 439", P(20) = 439e*°% = 683 = k = 5 In %53 = 0.022099.
P(40) = 439e%0% = 439e0-883% = 1063, P(49) = 439e*%F = 439108289 = 1206.
P(59) = 439e7%% = 439¢!-30389 = 1617,

Exercise 4.

(a) Use the fact that the world population was 2560 million in 1950 and 3040 million in
1960 to model the population of the world in the second half of the 20th century.

(b) What is the relative growth rate?

(c) Use the model to estimate the world population in 1993 and to predict the population
in the year 2020.
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Radioactive Decay, page 239

Radioactive substances decay by spontaneously emitting radiation.
If m(t) is the mass remaining from an initial mass mg of the substance after time ¢, then [ExEis

the relative decay rate XZgT00QT2e4

1 dm

m dt

has been found experimentally to be constant. It follows that

dm
DL A
a

where k is a negative constant. The solution is m(t) = mge.

Physicist express the rate of decay in terms of half-life (FEH), the time required for half

of any given quantity to decay.

Example 5. Scientists can determine the age of ancient objects by the method of radiocarbon
dating (JRESEBACHE). The bombardment of the upper atmosphere by cosmic rays converts
nitrogen to a radioactive isotope of carbon, *C, with a half-life of about 5730 years. Vege-
tation absorbs carbon dioxide through the atmosphere and animal life assimilates '4C food
chains. When a plant or animal dies, it stops replacing its carbon and the amount of 4C
begins to decrease through radioactive decay. Therefore the level of radioactivity must also
decay exponentially.

A parchment fragment was discovered that had about 74% as much *C radioactivity as

does plant material on the earth today. Estimate the age of the parchment.

Solution.

Exercise 6. Experiments show that if the chemical reaction
1
N5Og5 — 2NOy + 502

takes place at 45°C, the rate of reaction of dinitrogen pentoxide is proportional to its concen-
tration as follows:
B d[N2Os]
dt

(a) Find an expression for the concentration [NoOs] after ¢ seconds if the initial concentra-

= 0.0005[N5 O3]

tion is C.

(b) How long will the reaction take to reduce the concentration of NoOs5 to 90% of its

original value?
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Newton’s Law of Cooling, page 240

Newton’s Law of Cooling (4 IS AIEE) states that the rate of cooling of an object is propor-
tional to the temperature difference between the object and its surroundings, provides that
this difference is not too large.

If we let T'(t) be the temperature of the object at time ¢ and T be the temperature of the

surroundings, then we can formulate Newton’s Law of Cooling as a differential equation:

= kT T,
where £ is a constant.
When we make the change of variable y(t) = T'(t) — Ts. Since Ts is constant, we have
y'(t) = T'(t) and the equation becomes
dy _
dt
Hence we can solve y first and then find 7.

[ oAl 2Rl AR aBR, BINArE kS E SRR,

ky.

Example 7. In a murder investigation, the temperature of the corpse was 32.5°C at 1:30 PM
and 30.3°C and hour later. Normal body temperature is 37.0°C and the temperature of the
surroundings was 20.0°C. When did the murder take place?

Solution.

Exercise 8. A roast turkey is taken from an oven when its temperature has reached 85°C

and is placed on a table in a room where the temperature is 22°C.

(a) If the temperature of the turkey is 65°C after half an hour, what is the temperature

after 45 minutes?
(b) When will the turkey have cooled to 40°C?

Question 9. FHFHMMYE, —FRZEINRE, RERELD#E; A—HRRE S ERF MR, H—
MG LLEEN? (READ R L RAE, = IR S EEnRE. )
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Continuously Compounded Interest, page 241

If an amount Ay is invested at an interest rate r, and interest is compounded n times a year, E%EE
then in each compounding period the interest rate is ;- and there are nt compounding periods -'.:g_:

in t years, so after ¢ years the value of the investment is Ez4tMY1N1og
r nt
Ag (1 + —) .
n
The interest paid increases as the number of compounding periods n increases. If we let

n — 00, then we will be compounding the interest continuously GEFE#EF]) and the value of
the investment will be

A(t) = lim Ao (1+ %)"t _

n—oo

The above equation gives

dA
A
dt r (t)7

which says that, with continuous compounding of interest, the rate of increase of an investment

is proportional to its size.
Example 10.

(a) How long will it take an investment to double in value if the interest rate is 6% com-

pounded continuously?

(b) What is the equivalent annual interest rate?

Solution.

Exercise 11.

(a) If $3000 is invested at 5% interest, find the value of the investment at the end of 5 years
if the interest is compounded (1) annually, (2) semiannually, (3) monthly, (4) weekly,
(5) daily, and (6) continuously.

(b) If A(t) is the amount of the investment at time ¢ for the case of continuous compounding,

write a differential equation and an initial condition satisfied by A(t).




2ncz2b8oWEw
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3.9 Related Rates, page 245

Idea: Compute the rate of increase of one quantity in terms of the rate of change of another

quantity (which may be more easily measured).
Procedure:

(1) Draw a picture or a diagram if possible.
(2) Introduce notation. Assign symbols to all quantities that are functions of time.

(3) Find an equation that relates the two quantities and then use the Chain Rule to differ-
entiate both side with respect to time.

(4) Substitute the given information into the equation and get the unknown rate.

Example 1 (page 245). Air is being pumped into a spherical balloon so that its volume
increases at a rate of 100cm?/s. How fast is the radius of the balloon increasing when the
diameter is 50 cm?

Solution.

Example 2 (page 246). A ladder 5m long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at a rate of 1m/s, how fast is the top of the ladder sliding
down the wall when the bottom of the ladder is 3m from the wall?

Solution.

O S wyase REBEMENEL § m/s ZBHLE BD.
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Example 3 (page 246). A water tank has the shape of an inverted circular cone with base

radius 2m and height 4 m. If water is being pumped into the tank at a rate of 2m?/min, find a3
the rate at which level is rising the water is 3m deep. zFlye-Enolg

Solution.

The water of level is rising at a rate of

Example 4 (page 247). Car A is traveling west at 90km/h and car B is traveling north at %
100km/h. Both are headed for the intersection of the two roads. At what rate are the cars e
approaching each other when car A is 60m and car B is 80 m from the intersection? EN-91hJrUts

Solution.

The cars are approaching each other at a rate of

Example 5 (page 248). A man walks along a straight path at a speed of 1.5m/s. A searchlight EZEE
is located on the ground 6 m from the path and is kept focused on the man. At what rate E"‘w' i
is the searchlight rotating when the man is 8 m from the point on the path closest to the usconaretsc
searchlight?

Solution.

The searchlight is rotating at a rate of




2
h3
EI

ogMZvouMfL8

EiaEE

qoKOAYTi_-Q

24 3.10 Linear Approximations and Differentials goo.gl/sq7mdV

3.10 Linear Approximations and Differentials, page
251

Recall two high school mathematics questions.
Example 1. Let f(x) = 323 — 2222 + 54z — 43. Find f(2.001) correct to three decimal place.

Solution.

Example 2. Find 1.0001'% correct to two decimal place.

Solution.

L) anfar i —{E R [ B2

A curve lies very close to its tangent line near the point of tangency. In fact, by zooming
in toward a point on the graph of a differentiable function, we noticed that the graph looks
more and more like its tangent line. This observation is the basis for a method of finding
approximate values of functions.

The idea is that it might be easy to calculate a value f(a) of a function, but difficult to
compute nearby values of f. So we settle for the easily computed values of the linear function
L whose graph is the tangent line of f at (a, f(a)).

Given a curve y = f(x), an equation of the tangent line at (a, f(a)) is

y = f(a) + f'(a)(z — a).
Definition 3 (page 252). The approximation
f(x) = f(a) + f'(a)(z — a)

is called the linear approzimation or tangent line approzimation of f at a (KFMEfEET, VIR
#1). The linear function whose graph is this tangent line, that is,

L(z) = f(a) + f'(a)(z — a)
is called the linearization of f at a (¥R1EAL).
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Example 4 (page 252). Approximate the numbers 1/3.98. @;*"&E,
Solution. i

0i-B1dHTOGw

0] S [Ear e T ahat.
Example 5. Using a linear approximation to estimate cot 46°.

Solution.

=LAt A AR N

Example 6. Go back to Example 1. and Example 2. to find out the calculation is in fact

the linear approximation.
Solution.
(1) f(x) =323 — 2222 + 54 — 43 =1+ 2(x — 2) — 4(x — 2)? + 3(z — 2)3.
fl(z) =2—8(z —2)+9(z — 2)%2. f(2.001) = f(2) + f/(2)(2.001 — 2) = 1.002.
(2) f(z) = (1 + 2)100 = C100110050 | 10019951 | 10019852 4 ... 4 (100705100,

f'(x) = 100(1 4 )%. £(0.0001) ~ £(0) + f'(0)(0.0001 — 0) = 1.01.

Applications to Physics

Differentials

The ideas behind linear approximations are sometimes formulated in the terminology and [Ex
notation of differentials (#843). If y = f(z), where f is a differentiable function, then the 'E-', i

differential dz is an independent variable; that is, dz can be given the value of any real azwe2zEi-0

number. The differential dy is then defined in terms of dz by the equation
dy < f'(x) dz.

So dy is a dependent variable; it depends on the values of x and dz.
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The geometric meaning of differentials is shown in Figure 1.

Yy
R
o |
dy
P ,LA?/ |
/dx—A:c
[ = T+ Ax o
y = f(z)

Figure 1: Geometric meaning of differentials.

Let P(x, f(x)) and Q(x + Az, f(x + Ax)) be points on the graph of f and let dz = Axz.
The corresponding change in y is Ay = f(x + Az) — f(z). The slope of the tangent line PR
is the derivative f’(z). Thus the directed distance from S to R is f/(x)dz = dy. Therefore
dy represents the amount that the tangent line rises or falls (the change in the linearization),
whereas Ay represents the amount that the curve y = f(x) rises or falls when = changes by

an amount dx.

Example 7 (page 254). Compare the values of Ay and dy if y = f(z) =2 + 22 — 2z +1 =
9+ 14(z — 2) + 7(z — 2)? + (z — 2)® and z changes from 2 to 2.05.

hnPkx561rSo
Solution. Since f(2) = 9 and f(2.05) = 9+ 14 - 0.05 + 7 - (0.05)% + (0.05)3 = 9.717625, we

have

O THEERSRE Ay 8BS dy BEH.

Example 8 (page 255). The radius of a sphere was measured and found to be 21 cm with a
possible error in measurement of at most 0.05cm. What is the maximum error in using this

value of the radius to compute the volume of the sphere.

Solution.

L] BRERAERE, (RENEERT YN (6T BREIMENR?
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Although the possible error in Example 8 may appear to be rather large, a better picture
of the error is given by the relative error (FB¥17%%), which is computed by dividing the error
by the total volume:

AV dV Anr?dr 3d7‘

=Y . = T =3—
\% 14 §7r7"3 r

Thus the relative error in the volume is about three times the relative error in the radius. In

Example 8 the relative error in the radius is approximately

dr  0.05
— = — ~0.0024
r 21

and it produces a relative error of about 0.007 in the volume. The error could also be expressed
as percentage error (BRZEHTH) of 0.24% in the radius and 0.7% in the volume.
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3.11 Hyperbolic Functions, page 259

Hyperbolic Functions, page 259

xT

[=]

El;:'" Certain combinations of e* and e~

E¥E  many ways they are analogous to the trigonometric functions, and they have the same relation-
eP-eePnstée - ghip to the hyperbola that the trigonometric functions have to the circle. For this reason they
are called hyperbolic functions (ZMEKE) and individually called hyperbolic sine, hyperbolic

cosine, and so on.

Definition 1 (Definition of the hyperbolic functions, page 259).

arise so frequently in mathematics and engineering. In

. T —eTT et +e7 7" sinh x
sinhz = 5 coshx = — tanhz = “osh 2
cosh x 1 1
core sinh z e cosh x st sinh z
Yy Yy Yy
" -~~~ c—eeee-- Ht---—---—=
1 v 1 v 1

_______ ;i -
y =sinhz y = coshx y = tanhx

Figure 1: Hyperbolic functions.

Hyperbolic Identities (page 260).

sinh(—z) = —sinhx cosh(—xz) = coshx

cosh?z —sinh?z = 1 1 — tanh? 2 = sech® z
sinh(z + y) = sinhx cosh y + cosh x sinh y

cosh(z + y) = cosh z cosh y + sinh x sinh y

The identity cosh? z — sinh? z = 1 indicates the curve (cosh z,sinh z) is hyperbola.

Derivatives of Hyperbolic Functions (page 261).

i sinh z = cosh z i coshz = sinhz

dx dx

— tanh x = sech® x — cothz = —csch?z

dx dx

— sechx = —sech x tanh x — cschx = —csch x coth z
dx dx
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Inverse Hyperbolic Functions

Since the hyperbolic functions are defined in terms of exponential functions, the inverse hy- & i =
perbolic functions can be expressed in terms of logarithms: 7 :

d7G00wozXe8

sinh 'z = In (3: + V2 4+ 1)
cosh™'z =1n (3: + Va2 — 1)

1 14z
-1, _ +
tanh w—21n<1_w>

Derivatives of Inverse Hyperbolic Functions (page 263).

— sinh 'z = # i cosh ™z = #
dz V122 dz Nz
1 d 1
1. _ 1.
atanh x—1_$2 acoth x_l_g;2
—sech ™z = — —csch ™z =

dx V1 — a2 dx T Va2l

Example 2 (page 265). Using principles from physics it can be shown that when a cable is
hung between two poles, it takes the shape of a curve y = f(x) that satisfies the differential

equation
&y _pg | ()’
de2 T de )’

where p is the linear density of the cable, g is the acceleration due to gravity, T is the tension
in the cable at its lowest point, and the coordinate system is chosen appropriately.

The function

y=f(z) = ngcosh (p—;’x)

is a solution of this differential equation.
[] A curve with equation y = ¢ + a cosh (Z) is called a catenary (FRSEAR).

Example 3 (page 265). Another application of hyperbolic functions occurs in the description
of ocean waves: The velocity of a water wave with length L moving across a body of water
with depth d is modeled by the function

~ |gL 2d
v—\/2ﬂtanh< 17 >,

where g is the acceleration due to gravity.




